FUNDAMENTALS OF SCALING OUT DL TRAINING

Paulius Micikevičius, NVIDIA

HotChips 2020, DL Scale Out Tutorial

Larger is Better in DL

Larger models lead to higher task accuracies

- Language models: in the past 2 years grew from 340M to 175B parameters
- Recommender models: largest ones are reaching O(1B) parameters
- Vision models: deeper and wider Resnets and ResNeXTs
- Larger datasets lead to higher accuracies
 - Recommender data (user behavior): terabytes to petabytes
 - Image data: 1B Instagram dataset, JFT (300M images)

Challenges:

- Larger models -> training state no loner fits on a single processor
- Larger {models, datasets} -> long time to train
- Solution: scale out computing

Outline

- Brief Review of DNN Training
- Data Parallelism
- Model Parallelism
 - Pipeline
 - Intra-layer
- Communication Pattern Review
- Summary

Neural Network Training

- Start with randomly initialized weights
- Iterate through your data a minibatch of training data samples at a time:
 - Forward pass
 - Backward pass
 - Weight update

Simplified Example

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU

Forward Pass

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU

Forward Pass

- Network of 3 linear layers
- Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU

Forward Pass

- Network of 3 linear layers
 - Each layer:
 - Input: vector
 - Output: vector
 - Learned parameters (weights): projection matrix
 - Operation:
 - Multiply the input vector with the matrix
 - Apply a point-wise nonlinearity, say, ReLU

Forward Pass: minibatch of 2 inputs

 Matrix-vector multiplies turn into matrix-matrix multiplies

Simplified Example: Forward Pass, batch of 2

 Matrix-vector multiplies turn into matrix-matrix multiplies

Forward Pass: Compute Loss

- Loss function:
 - Produces a loss value that indicates how "wrong" the network was
 - Compares the output to the ground truth for each sample
 - Exact function math varies by task, doesn't matter for our discussion
- Goal of training: minimize the loss value
 - Update network weights so the output closely matches ground truth

Backward Pass

- Goal is to compute the updates to the layer weights
- Achieved by "back propagating" the loss through the layers
 - Each layer computes weight gradient, used to update the weights
 - Each layer computes activation gradient, to be backpropagated to preceding layer

Backward Pass

Compute the weight gradient

- *dW*: weight gradient (to update weights)
- *dY*: incoming activation gradient
- input activations (from fwd pass)

Compute the activation gradient

dX: output activation gradient to backpropagate to the preceding layer

Weight Update

- Also known as 'optimizer step'
 - Optimizer choices: SGD, Adam, Adagrad, ...
- Input:
 - Current network weights
 - Weight gradients (computed during bwd pass)
- **Output:** updated weights
- Operation:
 - Increment each weight with the corresponding gradient value
 - In practice, operation is more complex:
 - Update internal state with weight gradient, then update weights using internal state
 - Exact math doesn't matter for our discussion
- Internal state:
 - 1 or 2 "momenta"
 - Each momentum is as big as the weights
 - Usually fp32 in reduced precision (FP16/BF16) training
 - Optimizer may need 2-6x more memory than just the model

Weight Update

- Also known as 'optimizer step'
 - Optimizer choices: SGD, Adam, Adagrad, ...
- Input:
 - Current network weights
 - Weight gradients (computed during bwd pass)
- **Output:** updated weights
- Operation:
 - Increment each weight with the corresponding gradient value
 - In practice, operation is more complex:
 - Update internal state with weight gradient, then update weights using internal state
 - Exact math doesn't matter for our discussion
- Internal state:
 - 1 or 2 "momenta"
 - Each momentum is as big as the weights
 - Usually fp32 in reduced precision (FP16/BF16) training
 - Optimizer may need 2-6x more memory than just the model

Summary of Compute Stages per Layer

Backward Pass: weight gradients

Backward Pass: activation gradients

- Backward compute is ~2x of forward
- Backward pass requires activations computed during the fwd pass
 - X in the example (produced by a preceding layer)
 - This can be a major fraction of memory required to train, leading to scale-out for the larger models

Example:

R50 training in fp16 at batch size 256:

- requires ~15 GB of memory
- ~12 GB of that is for activations

Parallelism Taxonomy

Data Parallel

Each worker:

- Has a copy of the entire neural network model
- Responsible for compute of a portion of data (training minibatch)
- Forward pass:
 - Computes output activations for its portion of minibatch
 - No communication is needed

Backward pass:

- Computes activation gradients for its portion of minibatch
- Computes <u>contribution</u> to the weight gradient based on its portion of minibatch
 - All workers' contributions must be summed before weight update
- Weight update:
 - Each worker updates its copy of the model with combined gradients
 - Variants: distributed optimizer

Data Parallel: Forward Pass

No communication needed

- Own portion of output becomes own portio nof input for next layer
- Backward activation-gradient compute is essentially the same

Data Parallel: Backward Pass

- Each worker computes a different weight gradient (dW)
 - Based only on its own unique portion of data
- Weight gradients will have to be communicated so that after update each worker has the same exact weights

Data Parallel: Communication

• Allreduce:

- Sum all the workers' gradients
- Distribute the sum to all the workers
- After Allreduce each worker has the same "global" gradient
 - Can execute a weight update on its own model -> all workers will have the same model
- Any exposed communication is overhead, thus:
 - Use efficient communication (hw and sw), overlap communication, etc.

Allreduce Implementation Choices

• Each of *N* workers is responsible for:

- Summing 1/N gradients collected from (N 1) peers
- Distributing the sums to the (N 1) peers
- "Ring" reduction
 - For any topology that contains a 1D torus (ring)
 - Each worker communicates with 2 neighbors
 - 2(*N* 1) steps, worker sends/receives 1/*N* of all bytes
 - Each step requires a synchronization -> 2(N 1) syncs total
- "One-shot" reduction:
 - For fully-connected topologies (switches)
 - Each worker communicates with (N 1) neighbors
 - 2 steps, each with (*N* 1) substeps
 - One step per synchronization -> 2 syncs total
 - Allows the use of arithmetic in switches (Mellanox SHARP)
 - Reduces memory accesses and math by the worker

Communication Implementation

Communication libraries take care of complex details

- Accelerator can have multiple ports
- Links can be duplex
- Pipelining is used to hide latencies and syncs
- NCCL: NVIDIA Collective Communication Library
- Examples:
 - NVIDIA DGX-1
 - Each of 8 GPUs has 6 NVLINK ports
 - Each NVLINK port is duplex
 - GPUs are connected via hybrid mesh
 - NCCL uses multiples of 12 rings are used for allreduce
 - NVIDIA DGX-A100
 - Each of 8 GPUs has 12 NVLINK ports
 - Each NVLINK port is duplex (25 GB/s per direction)
 - GPUs are fully-connected through switches
 - NCCL uses multiples of 24 rings or one-shots are used for allreduce

DGX-A100 23 🐼 nvidia

Communication Overlap

- Data Parallel training can overlap compute and communication
 - Allreduce gradients for layer K, while computing gradients for layer (K 1)
 - Cannot be hidden completely last portion of the pipeline is exposed
 - Tradeoff between communication granularity and link bw utilization
 - Made by training framework SW and libraries like Horovod
- Reduction in switches (Mellanox SHARP) helps free up compute resources
 - Allreduce will compete for resources (memory and math bw) with computation

Distributed Optimizer

- At larger scales optimizer (weight update) can start dominating time
 - Each of *N* workers does 1/*N* of compute for fwd/bwd passes
 - Each of *N* workers does <u>all</u> the work to update model weights (stays constant with *N*)
- Solution: distributed optimizer
 - Appeared in: MLPerf v0.6 and later, ZERO paper
 - Include weight update as part of allreduce (each worker is responsible for 1/Nth of the weights)
 - 1) Collect and sum up the gradients from peers
 - 2) Update own portion of the weights $(1/N^{th} of the work compared to before)$
 - 3) Broadcast own portion of the updated weights to peers

Data Parallel: Challenges

- Strong scaling (increase the number of workers, keep minibatch size constant)
 - Certain layers require minimum minibatch sizes to properly operate
 - Example: batch normalization (BN) generally requires 16+ samples
 - Extra communication is needed between workers when worker minibatch is small
 - Reductions within small subsets of workers
- Weak scaling (increase the number of workers, increase minibatch size)
 - Training networks with large minibatches requires hyper-parameter adjustment
 - Learning rate schedule, BN decay, ...
 - Example: R50 (SGD up to bs=16K, LARS above 16K, ...)
 - Often increase the amount of work required to reach the same model accuracy

Workoad Increase with Batch Size

- Epochs to reach the same model accuracy (from various submissions to MLPerf v0.7)
 - Epoch = 1 processing pass through entire dataset

Model Parallel

Inter-layer Parallel (aka Pipeline Parallel):

A worker is responsible for its portion of the layers

Intra-layer Parallel:

A worker is responsible for its portion of each layer

- Idle bubbles:
 - 67%: 12/18 step-slots
- For N workers:
 - (N 1)/N idle slots

Pipeline Parallel: Subminibatches

Pipeline Parallel: Subminibatches

- N workers, K subminibatches:
 - 2(N + K 1) steps for fwd/bwd
 - Total step-slots: 2*N*(*N* + *K* 1)
 - Idle step-slots: 2N(N 1)
 - Fraction of idle slots: (N 1)/(N + K 1)

- As N grows:
 - $K = N \rightarrow 50\%$ idle slots
 - $K = 4N \rightarrow 20\%$ idle slots

Pipeline Parallel: Interleaved Layers

- Benefit: increases the percentage of time each worker is busy
 - Worker-0 is busy for 4 out of 6 fwd pass steps (compared to 2/4 in the previous slide)
- Downsides:
 - Increases communication linearly (with the number of interleaved layers per worker)
 - Problematic if skip connections cross workers

Pipeline Parallel: Communication

A worker communicates with its 2 neighbors

- 1D mesh topology
- 1D torus when interleaving layers
- Communication in each step of the fwd and bwd pass
 - Activations in fwd, activation gradients in bwd
- Communication very hard to overlap with computation

Pipeline Parallel: Challenges

- Lots of hard hard to hide communication
- Idle slots reduce scaling efficiency
 - Many subminibatches help with this, but run into the same problems as strong-scaling of dataparallel
- Load balancing workload across workers is difficult
 - Different layers of a network can take different amounts of time
 - Leads to even busy slots for other workers idling for portions of time

Model Parallel: Intra-Layer Parallel

- Partition a given layer's weights among the workers
- Addresses some of the Pipeline Parallel challenges
 - Idle slots, load imbalance
- Two variants:
 - Row-wise partitioning
 - Column-wise partitioning

Row-wise Partitioning

- Each worker:
 - Has a portion of weight rows
 - All of input activations
 - Computes a portion of output activations
- Fwd communication:
 - Allgather: next layer needs all activations

Column-wise Partitioning

- Each worker:
 - Has a portion of weight columns
 - Has a portion of input activations
 - Computes partial activations
 - Fwd communication:
 - Reduce_scatter: next layer needs full activations

Reducing Synchronization By Alternating Partitioning

- Note: no communication is needed
- Worker *i* produces output, which is its input for the next layer

Reducing Synchronization By Alternating Partitioning

Intra-Layer Parallel: Communication

- Row-wise in fwd becomes Col-wise in bwd
- Col-wise in fwd becomes Row-wise in bwd
- Row-wise:
 - Fwd: allgather
 - Bwd: reduce_scatter
- Col-wise:
 - Fwd: reduce_scatter
 - Bwd: allgather
- When row- and col- are alternated:
 - Allreduce every two layers, in fwd and bwd
 - Halves the synchronizations compared to not alternating

Communication Pattern Summary

• Data Parallel:

- <u>Allreduce</u> of weights
- Can be overlapped with computation
- Pipeline Parallel:
 - <u>Point-wise</u> communication of activations and activation gradients
 - Hard to overlap with computation
 - Hard to load-balance
- Intra-layer Parallel:
 - <u>Allgather, Reduce_scatter</u> of activations and activation gradients
 - <u>Allreduce</u> if row-wise and col-wise partitioning is alternated
 - Hard to overlap with computation
- Hybrid Parallel: some layers data parallel, some layer model-parallel
 - Common for recommendation networks (model parallel embeddings, data-parallel MLP)
 - <u>Alltoall</u> of activations and activation gradients: each pair of workers exchange unique values
 - Most performant on switched or fully connected topologies
 - Hard to overlap with computation

Summary

- Networks and dataset are getting larger to set new state of art results
- Scale-out enables these networks to be trained
- Success requires many optimized components:
 - Hardware:
 - Fast accelerators for DL
 - High-bandwidth, low-latency interconnects
 - Topologies matter (must match communication patterns)
 - Network switches with math capabilities free up DL accelerators to do compute
 - Software:
 - Math libraries (CUDNN, CUBLAS, MKL, ...)
 - Collective communication libraries (NCCL, Horovod, ...)
 - Training frameworks (MxNet, PyTorch, TensoFlow, HugeCTR, ...)
 - Proper choice of parallelism (manual, MeshTensorFlow, Gshard, WSE)

Throughput Improvements, MLPerf v0.5 \rightarrow v0.6 Largest Improvements were due to Scale-Out SW

MLPerf Submission Scale in Chips

MLPerf Submission Scale in Chips, Log Scale

