
Paulius Micikevičius, NVIDIA

HotChips 2020, DL Scale Out Tutorial

2

Larger is Better in DL

• Larger models lead to higher task accuracies

• Language models: in the past 2 years grew from 340M to 175B parameters

• Recommender models: largest ones are reaching O(1B) parameters

• Vision models: deeper and wider Resnets and ResNeXTs

• Larger datasets lead to higher accuracies

• Recommender data (user behavior): terabytes to petabytes

• Image data: 1B Instagram dataset, JFT (300M images)

• Challenges:

• Larger models -> training state no loner fits on a single processor

• Larger {models, datasets} -> long time to train

• Solution: scale out computing

3

Outline

• Brief Review of DNN Training

• Data Parallelism

• Model Parallelism

• Pipeline

• Intra-layer

• Communication Pattern Review

• Summary

4

Neural Network Training

• Start with randomly initialized weights

• Iterate through your data a minibatch of training data samples at a time:

• Forward pass

• Backward pass

• Weight update

5

Simplified Example

• Network of 3 linear layers

• Each layer:

• Input: vector

• Output: vector

• Learned parameters (weights):
projection matrix

• Operation:

• Multiply the input vector with the matrix

• Apply a point-wise nonlinearity, say, ReLU

Linear Linear Linear

Input

6

Forward Pass

• Network of 3 linear layers

• Each layer:

• Input: vector

• Output: vector

• Learned parameters (weights):
projection matrix

• Operation:

• Multiply the input vector with the matrix

• Apply a point-wise nonlinearity, say, ReLU

Linear Linear Linear

7

Forward Pass

• Network of 3 linear layers

• Each layer:

• Input: vector

• Output: vector

• Learned parameters (weights):
projection matrix

• Operation:

• Multiply the input vector with the matrix

• Apply a point-wise nonlinearity, say, ReLU

Linear Linear Linear

8

Forward Pass

• Network of 3 linear layers

• Each layer:

• Input: vector

• Output: vector

• Learned parameters (weights):
projection matrix

• Operation:

• Multiply the input vector with the matrix

• Apply a point-wise nonlinearity, say, ReLU

Linear Linear Linear

Output

9

Forward Pass: minibatch of 2 inputs

• Matrix-vector multiplies turn into
matrix-matrix multiplies

Linear Linear Linear

Input
Output

10

Output
Input

Simplified Example: Forward Pass, batch of 2

• Matrix-vector multiplies turn into
matrix-matrix multiplies

Linear Linear Linear

× =
Weights

Input

Activations

Output

Activations

W X Y

11

Forward Pass: Compute Loss

• Loss function:

• Produces a loss value that indicates how “wrong” the network was
• Compares the output to the ground truth for each sample

• Exact function math varies by task, doesn’t matter for our discussion

• Goal of training: minimize the loss value

• Update network weights so the output closely matches ground truth

Linear Linear Linear

Input

Ground Truth

Loss

Function

Loss Value

Output

12

Backward Pass

• Goal is to compute the updates to the layer weights

• Achieved by “back propagating” the loss through the layers
• Each layer computes weight gradient, used to update the weights

• Each layer computes activation gradient, to be backpropagated to preceding layer

Linear Linear Linear
Loss

Function

Loss Value

13

Backward Pass

Compute the weight gradient

dW: weight gradient (to update weights)

dY: incoming activation gradient

X: input activations (from fwd pass)

Compute the activation gradient

dX: output activation gradient

to backpropagate to the preceding layer

Linear Linear Linear
Loss

Function

Loss Value

=×

dXdYW T

× =
dWdY X T

14

Weight Update

• Also known as ‘optimizer step’
• Optimizer choices: SGD, Adam, Adagrad, …

• Input:

• Current network weights

• Weight gradients (computed during bwd pass)

• Output: updated weights

• Operation:

• Increment each weight with the corresponding gradient value

• In practice, operation is more complex:

• Update internal state with weight gradient, then update weights using internal state

• Exact math doesn’t matter for our discussion

• Internal state:

• 1 or 2 “momenta”

• Each momentum is as big as the weights

• Usually fp32 in reduced precision (FP16/BF16) training

• Optimizer may need 2-6x more memory than just the model

=

W WdW

- ×lr

SGD

15

Weight Update

• Also known as ‘optimizer step’
• Optimizer choices: SGD, Adam, Adagrad, …

• Input:

• Current network weights

• Weight gradients (computed during bwd pass)

• Output: updated weights

• Operation:

• Increment each weight with the corresponding gradient value

• In practice, operation is more complex:

• Update internal state with weight gradient, then update weights using internal state

• Exact math doesn’t matter for our discussion

• Internal state:

• 1 or 2 “momenta”

• Each momentum is as big as the weights

• Usually fp32 in reduced precision (FP16/BF16) training

• Optimizer may need 2-6x more memory than just the model

=

W WdW

- ×lr

=

v vdW

- ×lr

=

W Wv

+

SGD with momentum

SGD

µ ×

16

Summary of Compute Stages per Layer

• Backward compute is ~2x of forward

• Backward pass requires activations
computed during the fwd pass

• X in the example (produced by a preceding
layer)

• This can be a major fraction of memory
required to train, leading to scale-out for the
larger models

× =

W X Y

Forward Pass

× =
dWdY X T

Backward Pass:
weight gradients

=×

dXdYW T

Backward Pass:
activation gradients Example:

R50 training in fp16 at batch size 256:

• requires ~15 GB of memory

• ~12 GB of that is for activations

Weight update: + … =

W WdW

+

17

Parallelism Taxonomy

Parallel Training

Data Parallel Model Parallel

Intra Layer Inter Layer

18

Data Parallel

• Each worker:

• Has a copy of the entire neural network model

• Responsible for compute of a portion of data (training minibatch)

• Forward pass:

• Computes output activations for its portion of minibatch

• No communication is needed

• Backward pass:

• Computes activation gradients for its portion of minibatch

• Computes contribution to the weight gradient based on its portion of minibatch

• All workers’ contributions must be summed before weight update

• Weight update:

• Each worker updates its copy of the model with combined gradients

• Variants: distributed optimizer

19

Data Parallel: Forward Pass

• No communication needed

• Own portion of output becomes own portio nof
input for next layer

• Backward activation-gradient compute is
essentially the same

W X Y

× =

× =

× =

× =

Worker 0:

Worker 1:

Worker 2:

Worker 3:

20

Data Parallel: Backward Pass

• Each worker computes a different weight
gradient (dW)

• Based only on its own unique portion of data

• Weight gradients will have to be
communicated so that after update each
worker has the same exact weights

dWX TdY

× =Worker 0:

Worker 1:

Worker 2:

Worker 3:

× =

× =

× =

21

Data Parallel: Communication

• Allreduce:

• Sum all the workers’ gradients

• Distribute the sum to all the workers

• After Allreduce each worker has the same “global” gradient
• Can execute a weight update on its own model -> all workers will have the same model

• Any exposed communication is overhead, thus:

• Use efficient communication (hw and sw), overlap communication, etc.

22

Allreduce Implementation Choices

• Each of N workers is responsible for:

• Summing 1/N gradients collected from (N – 1) peers

• Distributing the sums to the (N – 1) peers

• “Ring” reduction

• For any topology that contains a 1D torus (ring)

• Each worker communicates with 2 neighbors

• 2(N – 1) steps, worker sends/receives 1/N of all bytes

• Each step requires a synchronization -> 2(N – 1) syncs total

• “One-shot” reduction:

• For fully-connected topologies (switches)

• Each worker communicates with (N – 1) neighbors

• 2 steps, each with (N – 1) substeps

• One step per synchronization -> 2 syncs total

• Allows the use of arithmetic in switches (Mellanox SHARP)

• Reduces memory accesses and math by the worker

23

Communication Implementation

• Communication libraries take care of complex details

• Accelerator can have multiple ports

• Links can be duplex

• Pipelining is used to hide latencies and syncs

• NCCL: NVIDIA Collective Communication Library

• Examples:

• NVIDIA DGX-1

• Each of 8 GPUs has 6 NVLINK ports

• Each NVLINK port is duplex

• GPUs are connected via hybrid mesh

• NCCL uses multiples of 12 rings are used for allreduce

• NVIDIA DGX-A100

• Each of 8 GPUs has 12 NVLINK ports

• Each NVLINK port is duplex (25 GB/s per direction)

• GPUs are fully-connected through switches

• NCCL uses multiples of 24 rings or one-shots are used for allreduce

DGX-1

DGX-A100

24

Communication Overlap

• Data Parallel training can overlap compute and communication

• Allreduce gradients for layer K, while computing gradients for layer (K – 1)

• Cannot be hidden completely – last portion of the pipeline is exposed

• Tradeoff between communication granularity and link bw utilization

• Made by training framework SW and libraries like Horovod

• Reduction in switches (Mellanox SHARP) helps free up compute resources

• Allreduce will compete for resources (memory and math bw) with computation

Layer

1
Layer

2
Layer

3

Compute Allreduce

25

Distributed Optimizer

• At larger scales optimizer (weight update) can start dominating time

• Each of N workers does 1/N of compute for fwd/bwd passes

• Each of N workers does all the work to update model weights (stays constant with N)

• Solution: distributed optimizer

• Appeared in: MLPerf v0.6 and later, ZERO paper

• Include weight update as part of allreduce (each worker is responsible for 1/Nth of the weights)

1) Collect and sum up the gradients from peers

2) Update own portion of the weights (1/Nth of the work compared to before)

3) Broadcast own portion of the updated weights to peers

26

Data Parallel: Challenges

• Strong scaling (increase the number of workers, keep minibatch size constant)

• Certain layers require minimum minibatch sizes to properly operate

• Example: batch normalization (BN) generally requires 16+ samples

• Extra communication is needed between workers when worker minibatch is small

• Reductions within small subsets of workers

• Weak scaling (increase the number of workers, increase minibatch size)

• Training networks with large minibatches requires hyper-parameter adjustment

• Learning rate schedule, BN decay, …

• Example: R50 (SGD up to bs=16K, LARS above 16K, …)

• Often increase the amount of work required to reach the same model accuracy

27

Workoad Increase with Batch Size

• Epochs to reach the same model accuracy (from various submissions to MLPerf v0.7)

• Epoch = 1 processing pass through entire dataset

28

Model Parallel

Inter-layer Parallel (aka Pipeline Parallel):

A worker is responsible for its portion of the layers

Layer

1

Layer

2

Layer

3

Layer

4

Layer

5

Worker 0

Worker 1

Worker 2

Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Worker 0 Worker 1 Worker 2

Intra-layer Parallel:

A worker is responsible for its portion of each layer

29

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

30

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

31

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

32

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

33

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

34

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

35

Pipeline Parallel

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

36

Pipeline Parallel

• Idle bubbles:

• 67%: 12/18 step-slots

• For N workers:

• (N – 1)/N idle slots

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

Time

37

Pipeline Parallel: Subminibatches

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

• 2 subminibatches

• 2x more steps

• Each step is ½
compute

• Idle bubbles: 50%

• 12/24 steps-slots

38

Pipeline Parallel: Subminibatches

• N workers, K subminibatches:

• 2(N + K – 1) steps for fwd/bwd

• Total step-slots: 2N(N + K – 1)

• Idle step-slots: 2N(N – 1)

• Fraction of idle slots: (N – 1)/(N + K – 1)

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Forward BackwardLoss

• As N grows:

• K = N → 50% idle slots

• K = 4N → 20% idle slots

39

Pipeline Parallel: Interleaved Layers

Worker 0

Worker 1

Worker 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

• Benefit: increases the percentage of time each worker is busy

• Worker-0 is busy for 4 out of 6 fwd pass steps (compared to 2/4 in the previous slide)

• Downsides:

• Increases communication linearly (with the number of interleaved layers per worker)

• Problematic if skip connections cross workers

Worker 0

Worker 1

Forward BackwardLoss

40

Pipeline Parallel: Communication

• A worker communicates with its 2 neighbors

• 1D mesh topology

• 1D torus when interleaving layers

• Communication in each step of the fwd and bwd pass

• Activations in fwd, activation gradients in bwd

• Communication very hard to overlap with computation

41

Pipeline Parallel: Challenges

• Lots of hard hard to hide communication

• Idle slots reduce scaling efficiency

• Many subminibatches help with this, but run into the same problems as strong-scaling of data-
parallel

• Load balancing workload across workers is difficult

• Different layers of a network can take different amounts of time

• Leads to even busy slots for other workers idling for portions of time

42

Model Parallel: Intra-Layer Parallel

• Partition a given layer’s weights among the workers

• Addresses some of the Pipeline Parallel challenges

• Idle slots, load imbalance

• Two variants:

• Row-wise partitioning

• Column-wise partitioning

Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Worker 0

Worker 1

Worker 2

×

×

43

Row-wise Partitioning

• Each worker:

• Has a portion of weight rows

• All of input activations

• Computes a portion of output activations

• Fwd communication:

• Allgather: next layer needs all activations

× =

× =

× =

× =

× =

× =

Communication:
Allgather

Layer K fwd Layer (K + 1) fwd

Worker 0

Worker 1

Worker 2

44

Column-wise Partitioning

• Each worker:

• Has a portion of weight columns

• Has a portion of input activations

• Computes partial activations

• Fwd communication:

• Reduce_scatter: next layer needs full
activations

× =

× =

× =

× =

× =

× =

Communication:
Reduce_scatter

Layer K fwd Layer (K + 1) fwd

Worker 0

Worker 1

Worker 2

+

+

+

45

• Note: no communication is needed

• Worker i produces output, which is
its input for the next layer

× =

× =

× =

Layer K fwd

Worker 0

Worker 1

Worker 2

× =

× =

× =

Layer (K + 1) fwd

Row-wise partitioning Col partitioning

Reducing Synchronization By Alternating Partitioning

46

Reducing Synchronization By Alternating Partitioning

× =

× =

× =

Layer K fwd

Worker 0

Worker 1

Worker 2

× =

× =

× =

Communication:
Allreduce

Layer (K + 1) fwd

+

+

+

× =

× =

× =

Layer (K + 2) fwd

Row-wise partitioning Col partitioning Row-wise partitioning

47

Intra-Layer Parallel: Communication

• Row-wise in fwd becomes Col-wise in bwd

• Col-wise in fwd becomes Row-wise in bwd

• Row-wise:

• Fwd: allgather

• Bwd: reduce_scatter

• Col-wise:

• Fwd: reduce_scatter

• Bwd: allgather

• When row- and col- are alternated:

• Allreduce every two layers, in fwd and bwd

• Halves the synchronizations compared to not alternating

48

Communication Pattern Summary

• Data Parallel:

• Allreduce of weights

• Can be overlapped with computation

• Pipeline Parallel:

• Point-wise communication of activations and activation gradients

• Hard to overlap with computation

• Hard to load-balance

• Intra-layer Parallel:

• Allgather, Reduce_scatter of activations and activation gradients

• Allreduce if row-wise and col-wise partitioning is alternated

• Hard to overlap with computation

• Hybrid Parallel: some layers data parallel, some layer model-parallel

• Common for recommendation networks (model parallel embeddings, data-parallel MLP)

• Alltoall of activations and activation gradients: each pair of workers exchange unique values

• Most performant on switched or fully connected topologies

• Hard to overlap with computation

49

Summary

• Networks and dataset are getting larger to set new state of art results

• Scale-out enables these networks to be trained

• Success requires many optimized components:

• Hardware:

• Fast accelerators for DL

• High-bandwidth, low-latency interconnects

▪ Topologies matter (must match communication patterns)

▪ Network switches with math capabilities free up DL accelerators to do compute

• Software:

• Math libraries (CUDNN, CUBLAS, MKL, …)

• Collective communication libraries (NCCL, Horovod, …)

• Training frameworks (MxNet, PyTorch, TensoFlow, HugeCTR, …)

• Proper choice of parallelism (manual, MeshTensorFlow, Gshard, WSE)

50

51

Throughput Improvements, MLPerf v0.5 → v0.6
Largest Improvements were due to Scale-Out SW

Identical machines submitted to v0.5
and v0.6

• Same chips, chip count, interconnect

• Adjusted for epoch differences

• Due to some rule and hyper-parameter
changes

Patterned bars: multi-node

52

MLPerf Submission Scale in Chips

53

MLPerf Submission Scale in Chips, Log Scale

