FUNDAMENTALS OF
SCALING OUT DL TRAINING

Paulius Micikevicius, NVIDIA
HotChips 2020, DL Scale Out Tutorial

Larger is Better in DL

Larger models lead to higher task accuracies
Language models: in the past 2 years grew from 340M to 175B parameters
Recommender models: largest ones are reaching O(1B) parameters
Vision models: deeper and wider Resnets and ResNeXTs
Larger datasets lead to higher accuracies
Recommender data (user behavior): terabytes to petabytes
Image data: 1B Instagram dataset, JFT (300M images)
Challenges:
Larger models -> training state no loner fits on a single processor
Larger {models, datasets} -> long time to train

Solution: scale out computing

NVIDIA.

Brief Review of DNN Training
Data Parallelism
Model Parallelism

Pipeline

Intra-layer
Communication Pattern Review
Summary

Outline

3

NVIDIA.

Neural Network Training

Start with randomly initialized weights

Iterate through your data a minibatch of training data samples at a time:
Forward pass
Backward pass
Weight update

4 NVIDIA.

Simplified Example

Input Network of 3 linear layers
Each layer:
Input: vector

Output: vector

Learned parameters (weights):
projection matrix

Operation:
Multiply the input vector with the matrix
Apply a point-wise nonlinearity, say, ReLU

5 NVIDIA.

Forward Pass

Network of 3 linear layers

Each layer:

Input: vector
Output: vector

Learned parameters (weights):
projection matrix

Operation:
Multiply the input vector with the matrix
Apply a point-wise nonlinearity, say, ReLU

6 NVIDIA.

Forward Pass

Network of 3 linear layers
E Each layer:

Input: vector
Output: vector

Learned parameters (weights):
projection matrix

Operation:
Multiply the input vector with the matrix
Apply a point-wise nonlinearity, say, ReLU

7 NVIDIA.

Forward Pass

Output Network of 3 linear layers
E O Each layer:

Input: vector
Output: vector

Learned parameters (weights):
projection matrix

Operation:
Multiply the input vector with the matrix
Apply a point-wise nonlinearity, say, ReLU

8 NVIDIA.

Forward Pass: minibatch of 2 inputs

Input Output Matrix-vector multiplies turn into
E E @ _ matrix-matrix multiplies

IIIIIII

Simplified Example: Forward Pass, batch of 2
Matrix-vector multiplies turn into
E @ matrix-matrix multiplies

X Y
« 6 =
Weights Output
Activations

Input
Activations

IIIIIII

Forward Pass: Compute Loss

Output
= Loss Value
Loss
.
o
Ground Truth

Loss function:

Produces a loss value that indicates how “wrong” the network was
Compares the output to the ground truth for each sample
Exact function math varies by task, doesn’t matter for our discussion
Goal of training: minimize the loss value

Update network weights so the output closely matches ground truth

NVIDIA.

Backward Pass

- Loss Value
Loss
Function

Goal is to compute the updates to the layer weights

Achieved by “back propagating” the loss through the layers
Each layer computes weight gradient, used to update the weights
Each layer computes activation gradient, to be backpropagated to preceding layer

12 NVIDIA.

Backward Pass

Compute the weight gradient
dW: weight gradient (to update weights)

dY: incoming activation gradient

X: input activations (from fwd pass)

Compute the activation gradient
dX: output activation gradient

to backpropagate to the preceding layer

13 NVIDIA.

Weight Update

Also known as ‘optimizer step’ SGD
Optimizer choices: SGD, Adam, Adagrad, ... W dW

Input: NN NN
Current network weights - Irx @ SN

Weight gradients (computed during bwd pass)

Output: updated weights

Operation:
Increment each weight with the corresponding gradient value
In practice, operation is more complex:

Update internal state with weight gradient, then update weights using internal state
Exact math doesn’t matter for our discussion

Internal state:
1 or 2 “momenta”
Each momentum is as big as the weights
Usually fp32 in reduced precision (FP16/BF16) training
Optimizer may need 2-6x more memory than just the model

14

NVIDIA.

Weight Update

Also known as ‘optimizer step’
Optimizer choices: SGD, Adam, Adagrad, ...
Input:

Current network weights

Weight gradients (computed during bwd pass)
Output: updated weights
Operation:
Increment each weight with the corresponding gradient value
In practice, operation is more complex:
Update internal state with weight gradient, then update weights using internal state
Exact math doesn’t matter for our discussion
Internal state: H x
1 or 2 “momenta”
Each momentum is as big as the weights
Usually fp32 in reduced precision (FP16/BF16) training
Optimizer may need 2-6x more memory than just the model

SGD with momentum

aw v
NN NN
- /fx g £) —
v w
= -

15 NVIDIA.

Summary of Compute Stages per Layer

w X Y
Forward Pass m

Backward compute is ~2x of forward

Backward pass requires activations
computed during the fwd pass

Backward Pass: XT aw X in the example (produced by a preceding
weight gradients = NSEE TR layer)
ENNENNN

This can be a major fraction of memory
required to train, leading to scale-out for the
larger models

Backward Pass:
activation gradients

~

Example:

R50 training in fp16 at batch size 256:
* requires ~15 GB of memory
« ~12 GB of that is for activations

Weight update:

16 NVIDIA.

Parallelism Taxonomy

Parallel Training

Data Parallel Model Parallel

IIIIIII

Data Parallel

Each worker:

Has a copy of the entire neural network model

Responsible for compute of a portion of data (training minibatch)
Forward pass:

Computes output activations for its portion of minibatch

No communication is needed
Backward pass:

Computes activation gradients for its portion of minibatch

Computes contribution to the weight gradient based on its portion of minibatch
All workers’ contributions must be summed before weight update

Weight update:
Each worker updates its copy of the model with combined gradients

Variants: distributed optimizer

18

NVIDIA.

Data Parallel: Forward Pass

~<

No communication needed

I
FHH

X
Worker 0: x Own portion of output becomes own portio nof
input for next layer

Worker 1: x E
Worker 2: « E
Worker 3: x I

Backward activation-gradient compute is
E essentially the same

19 NVIDIA.

Data Parallel: Backward Pass

ay X aw Each worker computes a different weight
Worker 0: E EHHH gradient (dW)

Based only on its own unique portion of data

Weight gradients will have to be
E communicated so that after update each

Worker 1: x OEH = worker has the same exact weights
Worker 2: . « -

HHHH
Worker 3: I x =

20 NVIDIA.

Data Parallel: Communication

Allreduce:

Sum all the workers’ gradients

Distribute the sum to all the workers
After Allreduce each worker has the same “global” gradient

Can execute a weight update on its own model -> all workers will have the same model
Any exposed communication is overhead, thus:

Use efficient communication (hw and sw), overlap communication, etc.

21 NVIDIA.

Allreduce Implementation Choices

Each of N workers is responsible for:
Summing 1/N gradients collected from (N - 1) peers
Distributing the sums to the (N - 1) peers
“Ring” reduction
For any topology that contains a 1D torus (ring)
Each worker communicates with 2 neighbors
2(N - 1) steps, worker sends/receives 1/N of all bytes
Each step requires a synchronization -> 2(N - 1) syncs total
“One-shot” reduction:
For fully-connected topologies (switches)
Each worker communicates with (N - 1) neighbors
2 steps, each with (N - 1) substeps
One step per synchronization -> 2 syncs total
Allows the use of arithmetic in switches (Mellanox SHARP)
Reduces memory accesses and math by the worker

22 NVIDIA.

Communication Implementation

Communication libraries take care of complex details
Accelerator can have multiple ports
Links can be duplex
Pipelining is used to hide latencies and syncs
NCCL: NVIDIA Collective Communication Library
Examples:
NVIDIA DGX-1
Each of 8 GPUs has 6 NVLINK ports
Each NVLINK port is duplex
GPUs are connected via hybrid mesh

NCCL uses multiples of 12 rings are used for allreduce
NVIDIA DGX-A100
Each of 8 GPUs has 12 NVLINK ports
Each NVLINK port is duplex (25 GB/s per direction)
GPUs are fully-connected through switches
NCCL uses multiples of 24 rings or one-shots are used for allreduce

LI LiL]
X1 %
" i

"~ DGX-1

E IE

-0 g--0

. i

o3

DGX-A1 00 23 NVIDIA.

Communication Overlap

Data Parallel training can overlap compute and communication
Allreduce gradients for layer K, while computing gradients for layer (K - 1)
Cannot be hidden completely - last portion of the pipeline is exposed
Tradeoff between communication granularity and link bw utilization
Made by training framework SW and libraries like Horovod
Reduction in switches (Mellanox SHARP) helps free up compute resources

Allreduce will compete for resources (memory and math bw) with computation

N\ J\L J
Y Y

Compute Allreduce

24

NVIDIA.

Distributed Optimizer

At larger scales optimizer (weight update) can start dominating time

Each of N workers does 1/N of compute for fwd/bwd passes

Each of N workers does all the work to update model weights (stays constant with N)
Solution: distributed optimizer

Appeared in: MLPerf v0.6 and later, ZERO paper

Include weight update as part of allreduce (each worker is responsible for 1/Nt of the weights)

Collect and sum up the gradients from peers
Update own portion of the weights (1/Nt of the work compared to before)

Broadcast own portion of the updated weights to peers

25

NVIDIA.

Data Parallel: Challenges

Strong scaling (increase the number of workers, keep minibatch size constant)
Certain layers require minimum minibatch sizes to properly operate
Example: batch normalization (BN) generally requires 16+ samples
Extra communication is needed between workers when worker minibatch is small
Reductions within small subsets of workers
Weak scaling (increase the number of workers, increase minibatch size)

Training networks with large minibatches requires hyper-parameter adjustment

Learning rate schedule, BN decayj, ...
Example: R50 (SGD up to bs=16K, LARS above 16K, ...)

Often increase the amount of work required to reach the same model accuracy

26

NVIDIA.

Epochs

Workoad Increase with Batch Size

Epochs to reach the same model accuracy (from various submissions to MLPerf v0.7)
Epoch = 1 processing pass through entire dataset

R50v1.5 GNMT
100

90 ‘ .3
80

70) ®

60 %.

50 °

40 ” s

30

20

10

=
o
oe

Epochs
O P N W B 0 OV N 00 O

0 8 16 24 32 40 48 56 64 72 0 2 4 6 8 10 12 14 16 18

Batch size, in thousands Batch size, in thousands

27

NVIDIA.

Model Parallel

Worker 0

Inter-layer Parallel (aka Pipeline Parallel):
A worker is responsible for its portion of the layers

Intra-layer Parallel:

Worker 1

A worker is responsible for its portion of each layer
Worker 0
Worker 1| e [t [Fr| e
woker2 \ J \/J \ /) \/J /)

28 “<ZNVIDIA.

Worker 2

Worker 0

Worker 2

Pipeline Parallel

Time
N\ J\UJ\L J
Y V Y
Forward Loss Backward

Worker 0

Worker 2

Pipeline Parallel

Time
N\ J\UJ\L J
Y V Y
Forward Loss Backward

Worker 0

Worker 2

Pipeline Parallel

Time
\\ J\UJ\L J
Y V Y

Worker 0

Worker 2

Pipeline Parallel

Time

~ JV\ ~ J

Forward Loss Backward

Worker 0

Worker 2

Pipeline Parallel

Time
\\ J\UJ\L J
Y V Y

Worker 0

Worker 2

Pipeline Parallel

Time
N\ J\UJ\L J
Y V Y
Forward Loss Backward

Worker 0

Worker 2

Pipeline Parallel

Time
\\ J\UJ\L J
Y V Y

Pipeline Parallel

Time >
Idle bubbles:
67%: 12/18 step-slots
Worker 0
_______________________ I I N _ For N workers:
Worker 1 (N - 1)/N idle slots
_______________________ I R sl SRR L
Worker 2 PY
L J\U J\L J
Y v Y

36 < NVIDIA.

Pipeline Parallel: Subminibatches

Worker 0

Worker 2

2 subminibatches
2x more steps

Each step is 2
compute

Idle bubbles: 50%
12/24 steps-slots

37 < NVIDIA.

Pipeline Parallel: Subminibatches

Worker 0
Worker 1
__________________ iyl I I Bl Mntll RN -
Worker 2 °
_ JUJ\L J
Y V Y
Forward Loss Backward
N workers, K subminibatches: As N grows:
2(N + K - 1) steps for fwd/bwd K = N - 50% idle slots
Total step-slots: 2N(N + K- 1) K = 4N = 20% idle slots

Idle step-slots: 2N(N - 1)
Fraction of idle slots: (N- 1)/(N+ K- 1)

@ NVIDIA.

Pipeline Parallel: Interleaved Layers

Worker 0

Worker 1

LB B B B N N B B _§B _§N]

Worker 2

Worker 0

Worker 1

Y
Forward

Benefit: increases the percentage of time each worker is busy
Worker-0 is busy for 4 out of 6 fwd pass steps (compared to 2/4 in the previous slide)

Downsides:

v

Loss

Increases communication linearly (with the number of interleaved layers per worker)

Problematic if skip connections cross workers

Y

Backward

39

< NVIDIA.

Pipeline Parallel: Communication

A worker communicates with its 2 neighbors
1D mesh topology
1D torus when interleaving layers

Communication in each step of the fwd and bwd pass

Activations in fwd, activation gradients in bwd

Communication very hard to overlap with computation

40 NVIDIA.

Pipeline Parallel: Challenges

Lots of hard hard to hide communication
Idle slots reduce scaling efficiency

Many subminibatches help with this, but run into the same problems as strong-scaling of data-
parallel

Load balancing workload across workers is difficult
Different layers of a network can take different amounts of time
Leads to even busy slots for other workers idling for portions of time

M NVIDIA.

Model Parallel: Intra-Layer Parallel

Partition a given layer’s weights among the workers

- x

Addresses some of the Pipeline Parallel challenges

Idle slots, load imbalance

Two variants:

Row-wise partitioning

Column-wise partitioning x

HHHH

42 “<ZNVIDIA.

Row-wise Partitioning

Worker 0 Each worker:

Has a portion of weight rows

All of input activations

Computes a portion of output activations

___________________ Fwd communication:
Allgather: next layer needs all activations
Worker 2 x| | =
[]
u
Y
Layer K fwd Communication: Layer (K + 1) fwd

Allgather

43 “<ZNVIDIA.

Column-wise Partitioning

Each worker:

Worker 0 |:

Has a portion of weight columns

Has a portion of input activations
Worker 1 Computes partial activations
_________ Fwd communication:
Reduce_scatter: next layer needs full
Worker 2 activations
u J \ J \L J
Y Y Y
Layer K fwd Communication: Layer (K + 1) fwd

Reduce_scatter

44 “<ZNVIDIA.

Reducing Synchronization By Alternating Partitioning

Row-wise partitioning

Layer K fwd

Col partitioning

Layer (K+ 1) fwd

Note: no communication is needed

Worker i produces output, which is
its input for the next layer

...........

Reducing Synchronization By Alternating Partitioning

Row-wise partitioning

[]]
u J
Y
Layer K fwd

Col partitioning

Layer (K+ 1) fwd Communication:

Allreduce

Row-wise partitioning

[]]
X =
T x | =[]
x| =
[]]
(N J
Y
Layer (K + 2) fwd

Intra-Layer Parallel: Communication

Row-wise in fwd becomes Col-wise in bwd
Col-wise in fwd becomes Row-wise in bwd
Row-wise:
Fwd: allgather
Bwd: reduce_scatter
Col-wise:
Fwd: reduce_scatter
Bwd: allgather
When row- and col- are alternated:
Allreduce every two layers, in fwd and bwd
Halves the synchronizations compared to not alternating

47 NVIDIA.

Communication Pattern Summary

Data Parallel:
Allreduce of weights
Can be overlapped with computation
Pipeline Parallel:
Point-wise communication of activations and activation gradients
Hard to overlap with computation
Hard to load-balance
Intra-layer Parallel:
Allgather, Reduce_scatter of activations and activation gradients
Allreduce if row-wise and col-wise partitioning is alternated
Hard to overlap with computation
Hybrid Parallel: some layers data parallel, some layer model-parallel
Common for recommendation networks (model parallel embeddings, data-parallel MLP)

Alltoall of activations and activation gradients: each pair of workers exchange unique values
Most performant on switched or fully connected topologies
Hard to overlap with computation

48 “<ZNVIDIA.

Summary

Networks and dataset are getting larger to set new state of art results
Scale-out enables these networks to be trained

Success requires many optimized components:
Hardware:
Fast accelerators for DL
High-bandwidth, low-latency interconnects
Topologies matter (must match communication patterns)
Network switches with math capabilities free up DL accelerators to do compute
Software:
Math libraries (CUDNN, CUBLAS, MKL, ...)
Collective communication libraries (NCCL, Horovod, ...)
Training frameworks (MxNet, PyTorch, TensoFlow, HugeCTR, ...)
Proper choice of parallelism (manual, MeshTensorFlow, Gshard, WSE)

49 NVIDIA.

Due to some rule and hyper-parameter

changes

I Patterned bars: multi-node

Transformer

Same chips, chip count, interconnect

Identical machines submitted to v0.5
Adjusted for epoch differences

and v0.6

GNMT

|

=
I
—

I

Resnet

Throughput Improvements, MLPerf v0.5 - v0.6
Largest Improvements were due to Scale-Out SW

© < N o ® © < 0N S
o~ o~ o~ ~ — — —l — —

9°'0A 01 G'0A woujdnpaads

@ NVIDIA.

51

MLPerf Submission Scale in Chips

1800
1600
1400
4§ 1200
S
w 1000
(=]
| -
2 800
£
=
= 600

40

o

20

o

N T

mv0.5
Hv0.6

LA l"l"””HH|

52 <A NVIDIA

MLPerf Submission Scale in Chips, Log Scale

2048

1024 mv0.5

512 Hv0.6

256

;.mua«««imim“WMWﬂ“mmN”””

Number of Chips
= W ()]]
(=)] L8] = %

0

=

IIIIII .

