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Quantum Computing: Key Concepts
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The Promise of Quantum Computing
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The Demand for Quantum Computing
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Relevant System Sizes

~50+ Qubits: Proof of
concept

" Computational power exceeds
supercomputers

" Learning test bed for quantum
“system”

~1000+ Qubits: Small
problems

" Limited error correction

" Chemistry, materials design

" Optimization

~1M+ Qubits: Commercial

not replacing, traditional HPC scale o
svystems * Fault tolerant operation

Quantum co-processor: augmenting,




Qubit = A Quantum Bit A/

Current Microwaves

Capacitors

U-— Microwaves

Inductor

Electron
Superconducting loops Trapped ions Silicon quantum dots Topological qubits
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Why Not Superconducting Qubits?
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Another View
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A Spin Qubit Looks Like a Transistor
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From Quantum Dots to Qubits
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Customized Testchip for Spin Qubits

Full 300mm Wafer Full Reticle Individually diced 7, 15, 23,
[ 3 and 55 gate arrays




28§ Fin Based Quantum Dots

Gate Cut

Qubit Fin
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Quantum Measurements Capability




Defining a Quantum Dot
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A Single Electron Quantum Dot
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Single Electron Relaxation: Tl

Measurement
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ESR Line and Rabi Oscillations

RF PULSE FOR QUBIT MANIPULATION
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How good is a qubit if you can’t scale?
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What about the Interconnects

3 spin qubit chip requires:
* 1 RFESR line
* >10 DC/AC gates for the qubits and Readout

Scaling this to 1,000 qubits [] several
thousands of coax lines

Current approach does not scale

* Form factor

* Thermal load on fridge (~1mW per cable)

* Power consumption
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Highly Integrated Cryogenic Qubit Control
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Cryogenic Controller Challenges

Enable System-on-Chip (SoC) Design at Cryogenic
Temperature




Intel Competitive Advantage

* RFIC/mixed-signal/quantum core
expertise

* Leverage communication theory
DSP and algorithms

HR1 IC Fabricated in

* Packaging and interconnect Intel 22nm FinFet CMOS
. Technology
expertise

°Intel 22nm FINFET technology




Horse Ridge

Controller capability

* Drive

Qubit type

* Superconducting and spin

Main features

* Frequency Multiplexing (4x32 qubits)

* Arbitrary pulse envelope (SRAM based)
* Wideband frequency output (2-20GHz)

Qubi
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Horse Ridge - Key Objectives
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Conclusions

* Quantum will change the world
* But it will require millions of qubits

* Spin Qubits are built on the same
technology as transistors and have
compelling performance

* Quantum Computing won’t happen with
brute force wiring and control




Thank you!
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