Quantum Computing: Underneath the hood

Matthias Steffen & Oliver Dial IBM T.J. Watson Research Center

Hotchips 2020

The Quantum Bit

Y

Ζ

Quantum Computing: Extra power from interferance

- Many computational paths from the initial state to each final state
- Each path accumulates a complex phase, e.g.
- Output probability is concentrated at the final states where (almost) all paths arrive with (approximately) the same phase.

The pillars of quantum computing

Error Quantum CorrectionInterconnects

> Hardware aware applications

Quantum Software

At the Core is hardware development

Improved fundamentals coherence gate fidelity high on/off ratio Junction physics Improved systems packaging and integration stable and reliable control systems Error correction More efficient codes (long range interactions) Codes co-designed with hardware Quantum interconnects Coupling to flying qubit Distributed compilers and correction Hardware aware applications Based on complexity of underlying circuit Hardware co-designed with circuit

lons

Credit: S. Debnath and E. Edwards/JQI Monroe Group, University of Maryland/JQI

Photons

Image from the Centre for Quantum Computation & Communication Technology, credit Matthew Broome

Nanowires

Superconducting Circuit

lmage from Kouwenhoven Group, Delft

Solid-state defects

Quantum Computing Technologies:?

Neutral Atoms

Image from Cheng Group, University of Chicago

NV Centers, Phosphorous in Si, SiC defects, etc. Image from Hanson Group, Delft

IBM Quantum / Quantum Introduction / $\ensuremath{\mathbb C}$ 2020 IBM Corporation

Quantum dots

Image from Univ. Basel

The Transmon

IBM Quantum

Superconducting Qubit:

Josephson Junction as a non-linear inductor

Phys. Rev. A 76, 04319 (2007)

IBM Quantum / Quantum Introduction / © 2020 IBM Corporation

IBM Quantum

Qubits and Errors

A qubit is a quantum two-level system Finite qubit coherence times

- T1: relaxation (dissipation think resistor)
- Tf: dephasing (randomization of f)
 - Results from measurement (intentional or not)
- T2: parallel combination of above,

Imperfect control pulses

Spurious inter-qubit couplings

Imperfect qubit state measurements

Errors unavoidable — Will they destroy our computation?

IBM Quantum / Quantum Introduction / © 2020 IBM Corporation

Yes but there is error correction

Coherence times of superconducting qubits

Developments to extend coherence times

- Materials e.g. [2]
- Design and geometries e.g. [3]
- 3D transmon [4]
- IR Shielding [5,6],
- Cold normal metal cavities and cold qubits [7]
- High Q cavities [8]
- Titanium Nitride (collaboration with David Pappas @ NIST Boulder) [9] ...
- Remarkable progress over the past [2] J. Martinis et al., PRL 95 210503 (2005) [3] K. Geerlings et al., APL 192601 (2012) [4] H. Paik et al., PRL 107, 240501 (2011) [5] R. Barends et al., APL 99, 113507 (2011) [6] A. Corcoles et al., APL 99, 181906 (2011) [7] C. Rigetti et al., PRB 86, 100506 (2012) [8] M. Reagor et al., arXiv:1302.4408 (2013)
 IBM 9 alum hang et al., APL 99, 1012602 (2013)

Steady progress in coherence over the years But still need ~ 1 more order of magnitu

IBM Quantum

IBM Quantum

Controlling the Qubit State

Two-qubit gates: Cross resonance

Theory: C. Rigetti and M. Devoret, Phys. Rev. B 81, 134507 (2010) Experiment J. Chow et al., Phys. Rev. Lett. 107, 080502 (2011)

IBM Quantum

Cross resonance: What can go

Wrong? Always on ZZ between every qubit pair

Trying ways to eliminate this but residual ZZ will always be present

Strong microwave drive

T1 and T2 not what we think during the gate?

Stark shift on the control

ΖI

Stark shift on spectator qubits

Any qubit coupled to C or T gets a Z

Z on random qubit in presence of cross-talk

Refocusing schemes can mitigate some of the Z errors (including ZZ) but residual commutator errors remain (e.g. ZY, etc) Rigetti and Devoret, PRB **81**, 134507 (2010)

Drive Q1 at the frequency of Q2

H=a*ZX+b*IX

High-fidelity single-shot readout

Need to detect small signals (-130 dBm)

Qubit Frequency (GHz)	Readout Frequency (GHz)	к/2р (MHz)	2χ/2π (MHz)	T ₁ average (μs)	T2 echo average (μs)
5.249	6.838	4.60	1.70	33.9 ± 0.27	39.4 ± 0.6

Total latency: 470 ns, readout fidelity ~0.99

Coherence

Understanding how the qubit couples to the environment.

Example surface loss

Q~200-500k Q~1-1.5M

Q~1.5-2.4M

Gambetta et al, IEEE Trans. Appl. Supercond. 27 (2017)

Single and two-qubit getesnd advanced calibration

F. Motzoi *et al.*, PRL. 103, 110501 (2009) qubit JC Hamiltonian S. Sheldon et al., PRA 93, 012301 (2016) $H = (\omega i i C + \chi \sigma^{Z}) a^{\dagger} a + \frac{\omega_{Q}}{2} \sigma^{Z} i$

Cross resonance interaction used for the two-qubit gate

C. Rigetti and M. Devoret, *PRB* **81**, 134507 (201<mark>0) Current limited two-qubit 99.1% Sheldon et al. Phys. Rev. A 93, 060302(R) [2016]</mark>

Measurement

Dispersive Limit of a resonatorqubit JC Hamiltonian

Gambetta et al. PRA, 77, 012112 (2008

Quantum limited amplifiers give 99% assignment fidelity in 500ns

IBM Quantum

Alternative Gates

Phys. Rev. Lett. 117, 250502 (2016)

 Drive coupling cavity at detuned frequency
 Turn on ZZ coupling
 Requires high quality factors

Flux based / tunable Bt

DiCarlo et al., Nature 460, 240-244 (2009)

- Turn on ZZ by tuning qubits or coupler
- Swap 11 -> 20 and back

Btune gate

McKay et al., Phys. Rev. App. 6, 064007 (2016)

 Drive coupler at difference of qubit frequencies

IBM Quantum

Two-qubit gates

Table 1

	Table	i State of the art ligh-liden	ty two-qubit gates in superconducting	g quons
Acronym ^a	$Layout^{b}$	First demonstration [Year]	Highest fidelity [Year]	Gate time
CZ (ad.)	T–T	DiCarlo et al. (71) [2009]	$99.4\%^{\dagger}$ Barends et al. (3) [2014]	$40\mathrm{ns}$
			99.5% [†] Kjaergaard et al. (72) [2019]	$60\mathrm{ns}$
√iSWAP	T–T	Neeley et al. (80)° [2010]	90% [*] Dewes et al. (73) [2014]	$31\mathrm{ns}$
CR	F-F	Chow et al. (74) [2011]	$99.1\%^{\dagger}$ Sheldon et al. (5) [2016]	$160\mathrm{ns}$
√ bSWAP	F-F	Poletto et al. (75) [2012]	86%* ibid.	$800\mathrm{ns}$
MAP	F-F	Chow et al. (76) [2013]	87.2% [*] ibid.	$510\mathrm{ns}$
CZ (ad.)	T-(T)-T	Chen et al. (55) [2014]	99.0% [†] ibid.	$30\mathrm{ns}$
RIP	3D F	Paik et al. (77) [2016]	$98.5\%^{\dagger}$ ibid.	$413\mathrm{ns}$
√iSWAP	F-(T)-F	McKay et al. (78) [2016]	$98.2\%^{\dagger}$ ibid.	$183\mathrm{ns}$
CZ (ad.)	T–F	Caldwell et al. (79) [2018]	99.2% [†] Hong et al. (6) [2019]	$176\mathrm{ns}$
CNOT _L	BEQ-BEQ	Rosenblum et al. (13) [2018]	$\sim 99\%^{\Box}$ ibid.	$190\mathrm{ns}$
$CNOT_{T-L}$	BEQ-BEQ	Chou et al. (81) [2018]	79% [*] ibid.	$4.6\mu s$

Kjaergaard et al., Annual Reviews of Condensed Matter Physics 11, 369-395 (2020)

State of the ant high fidelity two qubit gates in superconducting qubits

Quantum Hardware Challenges

IBM Quantum

Room temp electronics (stable, low-noise,

Processor, device development

Coherence, junctions, materials

Better two-qubit gates

Packaging

Rosenberg et al., npj Quantum Information volume 3, Article number: 42 (2017)

Randomized Benchmarking {M}

- 1. Select I Cliffords (from the n-qubit group) randomly and calculate the inversion gate
- Štarting in |0> measure the polarization of each qubit after application of the sequence
- 3. Average over many different random sequences ("seeds")
- 4. Fit to $A^*\alpha^n + B$ Error is related to α as $d/(d-1)^*(1-\alpha)$

Ν	Cliffords
1	24
2	11,520
3	92,897,280
4	12,128,668,876,800

Eaaswar Magesan, J. M. Gambetta, and Joseph Emerson, "Scalable and robust randomized benchmarking of quantum processes," Phys. Rev. Lett. 106, 180504 (2011)

Conclusions

- Lots of progress over the past decade
- Approximately 50-qubit devices can be build with "good" fidelity
- Many significant scaling challenges left
- Error correction important long term

At the Core is hardware development Quantum

Improved fundamentals coherence gate fidelity high on/off ratio Junction physics Improved systems packaging and integration stable and reliable control systems Error correction More efficient codes (long range interactions) Codes co-designed with hardware Quantum interconnects Coupling to flying qubit Distributed compilers and correction Hardware aware applications Based on complexity of underlying circuit Hardware co-designed with circuit

IBM Q Experience

Launched May 4, 2016

Free, cloud-based GUI and programmatic access to small quantum devices and simulators

Detailed user guide with example algorithms

> 160,000 users

> 20 million

Writing quantum circuits: the "quantum score"

- "Textbook" way of showing quantum circuits
- Conducive to user-friendly drag-and-drop interface
- Useful for beginners studying simple circuits
- Becomes unmanageable for large/complex circuits

Writing quantum circuits: OpenQASM

- Text-based circuit representation
- Equivalent to quantum score
 - The OpenQASM at right represents the quantum score on the previous slide
- Good for sending basic commands to a quantum computer
- Not useful for writing circuits manually, but amenable to programmatic generation

Full specification: arxiv.org/pdf/1707.03429.pdf

include "qelib1.inc";

qreg q[3]; creg c[3]; h q[0]; h q[1]; x q[2]; cx q[1],q[2]; cx q[0],q[2]; h q[0]; h q[1]; h q[2]; measure $q[0] \rightarrow c[0];$ measure $q[1] \rightarrow c[1];$ measure $q[2] \rightarrow c[2];$

Writing quantum circuits: OpenPulse

• An even lower level than OpenQASM: direct control over the analog pulses being sent to control and measure the qubits

• Programmatic generation is critical for building even the simplest circuits

arxiv.org/pdf/1905.02666.pdf

Circuit-Level Interface

from qiskit.circuit import QuantumCircuit, Gate, Parameter from qiskit.quantum info.operators import Operator

```
# define circuit without register
circ = QuantumCircuit(3)
```

```
# add an opaque gate
```

opaque_gate = Gate(name='opaque', num_qubits=2, params=[])
circ.append(opaque_gate, [0, 1])
circ.barrier()

```
# add a unitary operator
```

```
sigma_x = np.array([[0, 1], [1, 0]])
sigma_y = np.array([[0, -1j], [1j, 0]])
matrix = np.kron(sigma_x, sigma_y)
unitary = Operator(matrix)
circ.append(unitary, [0, 2])
circ.barrier()
```

```
# add a subroutine and parametrize it
sub_circ = QuantumCircuit(2, name='sub_circ')
sub_circ.h(0)
phi = Parameter('\u03c6')
sub_circ.crz(phi, 0, 1)
sub_circ.t(0)
sub_inst = sub_circ.to_instruction()
circ.append(sub_inst, [1, 2])
```


Bind Parameters

circ = circ.bind parameters({phi: 1.57})

Qiskit Terra

Qiskit Compilation Pipeline

IBM Quantum

Qiskit Terra A solid foundation f

qc=QuantumCircuit(3,3)
qc.h(0)
qc.cx(0,2)
qc.measure(0,0)
qc.draw(output='mpl')

backend = provider.get_backend('ibmq_london')
qc_device = transpile(qc, backend)
display(qc_device.draw(output='mpl'))

backend = provider.get_backend('ibmq_london')
qc_device = transpile(qc, backend,optimization_level=3)
display(qc_device.draw(output='mpl'))

The Importance of the Transpiler

IBM Quantum

Qiskit Aqua

- High-level, applicationspecific modules in finance, chemistry, optimization, and AI
- Interfaces with domainspecific packages e.g. PySCF for chemistry
- Implements hybrid classical-quantum algorithms such as VQE

Qiskit Ignis: Features

Characterization

- Coherence (T1 and T2)
- Gates (amplitude and angle calibratio
- Hamiltonian (ZZ crosstalk measureme

Mitigation

- Measurement error mitigation
- Verification
 - Quantum volume
 - Randomized benchmarking
- Tomography (state and proce

Calibrating and Benchmarking CR

IBM Quantum

defaults = backend.defaults()
config = backend.configuration()

```
cr_pulse = gaussian_square(duration, amp, sigma, risefall)
```

```
sched = Schedule()
sched += cr_pulse(ControlChannel(1))
```

```
inst_map = defaults.instruction_schedule_map
inst_map.add('CR', [1, 0], sched)
basis_gates += config.basis_gates + ['CR']
```

```
qr = QuantumRegister(2)
circuit = QuantumCircuit(qr)
circuit.append(Gate('CR', 2, []), qargs=[qr[1], qr[0]])
```

```
qpt_circs = process_tomography_circuits(circuit, [qr[0], qr[1]])
qpt_circs_transpiled = transpile(qpt, backend, basis_gates)
qpt_scheds = schedule(qpt_circs_transpiled, backend, inst_map)
result = execute(qpt_sches, backend).result()
qpt_tomo = ProcessTomographyFitter(result, qpt_circs)
```


© 2020 IBM Corporation

200+ Papers and

IBM Quantum

Get started...

pip install qiskit quantum-computing.ibm.com

Qiskit

An open-source quantum computing framework for leveraging today's quantum processors in research, education, and business

Qiskit Terra

A solid foundation for quantum computing

Algorithms for near-term quantum applications

Qiskit

Aqua

Qiskit Aer

A high performance simulator framework for quantum circuits

Qiskit Ignis

Understanding and mitigating noise in quantum device