Google

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Zhifeng Chen Google Inc.

Hot Chips 2020 Tutorial on "Machine Learning Scaleout" 08/16/2020

Google Neural Machine Translation

Develop a universal machine translation model (i.e. one model for all languages and domains)

"Perhaps the way [of translation] is to descend, from each language, down to the common base of human communication -the real but as yet **undiscovered universal language** -- and then re-emerge by whatever particular route is convenient."

Warren Weaver (1949)

The latest news from Google AI

Exploring Massively Multilingual, Massive Neural Machine Translation

Motivation 1:

Improve translation quality for all language pairs

Google

{Spanish, French, German, ...}

Low-resource languages {Yoruba, Sindhi, Hawaiian, ...}

Motivation 2: Expand language coverage

In the world, there are...

7,000+

Total languages

African languages

2,000+

700+

Native Am. languages¹

But Translate only supports...

103 Total languages

African languages

Native Am. languages

Motivation 3:

Neural network scaling and the new understanding of generalization

Training Data Set Size (Log-scale)

Motivation 3:

Neural network scaling and the new understanding of generalization

Motivation 4: This is a compelling test bed for ML research

Massive multilinguality requires advances in :

- Multi-task learning
- Meta-learning
- Continual learning

To achieve massive multilinguality, we need massive scale, requires advances in:

- Model capacity
- Trainability and optimization
- Efficiency improvements

Progress and Future

🗄 🕻 Google Al

Number of Synapses

Transformer

- Powerful
 - Cores to many SOTA results.
- Simple
 - Easy to express in linear algebra.
 - Reproduced many many times.
- Originally proposed in the paper

Mixture of Experts (MoE)

- Sparsely gated
 - Cost-effective inference
- Embarrassingly parallelizable
 - Nice to accelerators
- Originally proposed in this <u>paper</u>

Mixture-of-Experts Transformer

Position-wise Mixture-of-Experts Layer

 x_s is the input token

 $\mathcal{G}_{s,E} = ext{GATE}(x_s)$ $ext{FFN}_e(x_s) = wo_e \cdot ext{ReLU}(wi_e \cdot x_s)$ $extsymbol{y}_s = \sum_{e=1}^E \mathcal{G}_{s,e} \cdot ext{FFN}_e(x_s)$ E feed-forward networks $FFN_1 \dots FFN_E$

 $\mathcal{G}_{s,E}$ is computed by a gating network. y_s , is the weighted average

Algorithm details

- Gate function written in linear algebra
 - Easy to express in a sequential program
- Experts load balancing during training
 - Auxiliary loss helps
- Uniform routing during warming up phase
- Random second expert dispatch
- Flat beam search for inference

Google Research

Google Research

GShard Overview

tf.einsum recap

Matrix multiplication
einsum('ij,jk->ik', m0, m1)

Transpose
einsum('ij->ji', m)

User Annotation

1		# Partition inputs along group (G) dim.
2	+	<pre>inputs = split(inputs, 0, D)</pre>
3		# Replicate the gating weights
4	+	wg = replicate(wg)
5 6 7 8 9		<pre>gates = softmax(einsum("GSM,ME->GSE", inputs, wg)) combine_weights, dispatch_mask = Top2Gating(gates) dispatched_expert_inputs = einsum("GSEC,GSM->EGCM", dispatch_mask, reshaped_inputs) # Partition dispatched inputs along expert (E) dim.</pre>
10	+	<pre>dispatched_expert_inputs = split(dispatched_expert_inputs, 0, D)</pre>
11 12		<pre>h = einsum("EGCM,EMH->EGCH", dispatched_expert_inputs, wi)</pre>

Einsum Sharding Example

Einsum Sharding Example

Einsum: GSEC,GSM->EGCM

M4 \triangle BLEU

Google Research

600B

200B

150B

50B

37B

12.5B 2.3B

100×0.4B

15 600B MoE(2048,36L) - 600B MoE(2048,12L) - 200B ABLEU 10 MoE(512E,36L) - 150B MoE(512E,12L) - 50B MoE(128E,36L) - 37B MoE(128E,12L) - 12.5B 5 ----- T(96L) - 2.3B BLEU ΔBLEU Id Model Weights avg. avg. 44.3 13.5 (1) MoE(2048E, 36L) (2) (3) MoE(2048E, 12L) 41.3 10.5 1B+ examples ← high-resouce languages ... low-resource languages → 10k examples MoE(512E, 36L) 43.7 12.9 per language per language (4) MoE(512E, 12L) 40.0 9.2 (5) MoE(128E, 36L) 39.0 8.2

(6)

*

*

MoE(128E, 12L)

T(96L)

Baselines

36.7

36.9

30.8

5.9

6.1

-

Quality vs. Cost

HBM Profile

Google Research

Execution Time Breakdown

Communication Primitives for Sharding

- AllReduce: Performs elementwise reduction (e.g., summation) over the inputs from all participants
- AllGather: Concatenates tensors from all participants following a specified order
- **AIIToAII**: Each participant splits its input of along a dimension, then sends each piece to all other participants. On receiving data pieces from others, each participant concatenates the pieces
- **Collective-Permute**: Given a list of source-destination pairs, the input data of a source device is sent to the corresponding destination device

Conclusion

- Giant neural networks are awesome.
- Mixture-of-expert makes giant nets cost effective.
- Simple API makes building such networks feasible.

Thank you

