
Confidential + Proprietary

Exploring Limits of ML Training
on Google TPUs

Sameer Kumar, Dehao Chen
{sameerkm, dehao}@google.com

Hot Chips 2020 Tutorial on “Machine Learning Scaleout”
08/16/2020

1

Confidential + Proprietary

Overview

● Scalable Architecture

○ TPU-v3 Multipods with 4096 TPU-v3 chips

○ Fast and scalable collective implementation

● Scalability Techniques

○ Weight update sharding

○ Model parallelism

● Performance results and conclusion

2

Confidential + Proprietary

Space-race for the biggest ML machine

● AI supercomputer at Azure with 10K GPUs
● NVIDIA DGX SuperPods with 2k GPUs
● Google TPU MultiPods with 4k chips

3

Confidential + Proprietary

Tensor Processing Units (TPUv3)

420 TFLOPS, 128 GB HBM

TPU Pod: 100+ PFLOPS, 32 TB HBM, 2-D Toroidal Mesh Network

Image Source: https://cloud.google.com/tpu/
4

https://cloud.google.com/tpu/

Confidential + Proprietary

The Google TPU multipods

1024 chips; 32x32 torus topology;
100+ PFLOPS

4096 chips;
128x32 mesh
topology; 400+
PFFLOPS

5

Confidential + Proprietary

TPUv3: System Architecture

Key Features
● 128x128 Systolic arrays provide the massive horsepower; bfloat16 numerics
● Scalar, vector units to perform data formatting and non-matmul operations
● HBM accessed via on-chip interconnect

6

Confidential + Proprietary

TPUv3: Software

Key Features

● Models → TensorFlow → XLA → TPU
instructions

● Just-in-time compiled, launched
synchronously on a “slice” of a TPU Pod

● Several communication primitives

7

Confidential + Proprietary

Multiple programming paradigms on TPUs

● TF

○ TF 1.x and TF 2.x enabled on TPUs

● JAX

○ Enable high performance machine learning research through composable
transformations of Python and NumPy functions

● Pytorch

8

Confidential + Proprietary

Challenges of large scale training

● Accelerate throughput of a large mini-batch SGD training

○ Execute linear algebra at high throughput on an accelerator (XLA Compiler)

○ Execute fast gradient summation

● Increase availability of this large machine : the fire fighter approach

● Scalable launch of ML Ops

● Scalable weight initialization

● Optimized host input pipelines

9

Confidential + Proprietary

N-D Mesh/Torus Network Overview

● Nodes connected 2*n neighbors via
bidirectional network links

● Optimized for near neighbor
communication

● All-to-all traffic can be bisection
limited

10

Confidential + Proprietary

Allreduce on a 2-D Torus

A1 A2 A3

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A4A1 A2 A3

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A4

Phase 0: Execute sums along columns
Phase 1: Execute sums along rows.
Payload in phase 1 is scaled down by the
size of the columns

11
We enable global summation in float32 and bfloat16 precision

Confidential + Proprietary

Communication Scaling on Multipods

Maximize

Minimize

12

Confidential + Proprietary

Scalability Techniques

13

Confidential + Proprietary

How do we scale training to this large system

● Compiler (XLA) automatically optimizes for scalability
○ Automatic fusion to overlap different computations
○ Automatic layout optimization to minimize data formatting
○ Automatic memory locality optimization to get most out of SRAM
○ Automatic cross replica optimization to maximize parallelism

● Simple API with compiler optimization to partition the model
○ Flexible annotation on a small part of the model
○ Automatic propagation to fully partition the model
○ Model compiled by SPMD to achieve good compile time and run time performance

14

Confidential + Proprietary

Inside a training step

Forward pass:
conv/matmul + loop
fusion

Backward pass:
conv/matmul + loop
fusion

All-reduce
gradients Weight update

Typical image models: small weights, large input

Typical sequence models: large weights, small input

15

Confidential + Proprietary

Scalability bottleneck

Batch only affects forward/backward passes

Forward pass:
conv/matmul + loop
fusion

Backward pass:
conv/matmul + loop
fusion

Forward
pass

Backward
pass

All-reduce
gradients Weight update

All-reduce
gradients Weight update

Reduce batch size

16

Confidential + Proprietary

Memory-bound
Sensitive to number of optimizer’s slot variables
(moving average, momentum, etc.)

Weight-update time sensitive to optimizers

Forward
pass

Backward
pass

All-reduce
gradients Weight update

SGD:

ADAM:

17

Confidential + Proprietary

Tr
ai

ni
ng

 lo
op

Weight-update sharding

compute
local

gradient

all-reduce

weight

update weight

gradient

Replicated
weight
update

slot var

[Yuanzhong Xu et al: Automatic Cross-Replica Sharding of Weight Update in Data-Parallel Training]

Tr
ai

ni
ng

 lo
op

compute
local

gradient

reduce-scatter

weight

update weight

gradient

slot var

all-gather

18

Confidential + Proprietary

Tr
ai

ni
ng

 lo
op

Weight-update sharding

compute
local

gradient

all-reduce

weight

update weight

gradient

Replicated
weight
update

slot var

[Yuanzhong Xu et al: Automatic Cross-Replica Sharding of Weight Update in Data-Parallel Training]

Tr
ai

ni
ng

 lo
op compute local

gradient

reduce-scatter

weight

update

grad
shard

all-gather

initial slot var

all-gather

slot
shard

initial weight

final slot var final weight

weight
shard

all-gather

Sharded
weight
update

19

Confidential + Proprietary

Weight-update sharding

● Weight and slot vars are sharded before training loop
● All-gather right before forward/backward passes
● Reduce-scatter on gradients
● Weight-update on shards
● An automatic optimization with no model change

Tr
ai

ni
ng

 lo
op compute local

gradient

reduce-scatter

weight

update

grad
shard

all-gather

initial slot var

all-gather

slot
shard

initial weight

final slot var final weight

weight
shard

all-gather

20

Confidential + Proprietary

Weight-update sharding

● Performance
○ Weight-update takes much less time
○ In each step: 1 reduce-scatter Inside + 1 all-gather roughly equals the cost of 1 all-reduce
○ Automatically convert weight to BF16

■ Faster all-gather
■ Faster convolutions

● Memory saving
○ Slot vars are sharded, memory could be reused for activationsTr

ai
ni

ng
 lo

op compute local
gradient

reduce-scatter

weight

update

grad
shard

all-gather

initial slot var

all-gather

slot
shard

initial weight

final slot var final weight

weight
shard

all-gather

21

Confidential + Proprietary

Weight-update sharding

SGD:

ADAM:
Weight-update
sharding

● Step time will be less sensitive to optimizers: weight-update is already fast

22

Confidential + Proprietary

Use Model Parallelism for Small Batch per Core

Graph Partitioning: place subgraphs of operators across different cores (e.g.
Inception)

Spatial Partitioning: partition individual operator (e.g. conv) across different cores
(e.g., ResNet-like)

GPipe: place layers on different cores and pipeline the execution (e.g., RNN)

GShard: partition individual operator across different cores using data-parallelism
(e.g., Xformer)

Ref: TPU Model Parallelism

23

https://arxiv.org/abs/1909.09756

Confidential + Proprietary

Spatial Partitioning for Image Models

● Halo exchange is required for overlapping windows
● Weights are replicated; only activations are partitioned

Kernel

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

An example of 4-way convolution partitioning

tpu_config=tpu_config.TPUConfig(
 iterations_per_loop=100,
 num_shards=2,
 num_cores_per_replica=4,
 input_partition_dims=[[1, 2, 2, 1], None]]
)

24

Confidential + Proprietary 25

Confidential + Proprietary

MLPerf 0.7 results

26

Confidential + Proprietary

Takeaways

● Scaling workloads to large systems is hard
● Fast and flexible interconnect is essential
● Software innovations can remove bottlenecks in scaling
● Model parallelism helps to further scale up

TPUs are available on

27

