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Overview

● Scalable Architecture

○ TPU-v3 Multipods with 4096 TPU-v3 chips

○ Fast and scalable collective implementation

● Scalability Techniques

○ Weight update sharding

○ Model parallelism

● Performance results and conclusion
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Space-race for the biggest ML machine

● AI supercomputer at Azure with 10K GPUs
● NVIDIA DGX SuperPods with 2k GPUs
● Google TPU MultiPods with 4k chips
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Tensor Processing Units (TPUv3)

420 TFLOPS, 128 GB HBM

TPU Pod: 100+ PFLOPS, 32 TB HBM, 2-D Toroidal Mesh Network

Image Source: https://cloud.google.com/tpu/
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The Google TPU multipods

1024 chips; 32x32 torus topology; 
100+ PFLOPS

4096 chips; 
128x32 mesh 
topology; 400+ 
PFFLOPS
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TPUv3: System Architecture

Key Features
● 128x128 Systolic arrays provide the massive horsepower; bfloat16 numerics
● Scalar, vector units to perform data formatting and non-matmul operations
● HBM accessed via on-chip interconnect
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TPUv3: Software 

Key Features

● Models → TensorFlow → XLA → TPU 
instructions

● Just-in-time compiled, launched 
synchronously on a “slice” of a TPU Pod

● Several communication primitives
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Multiple programming paradigms on TPUs

● TF 

○ TF 1.x and TF 2.x enabled on TPUs

● JAX

○  Enable high performance machine learning research through composable 
transformations of Python and NumPy functions

● Pytorch
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Challenges of large scale training

● Accelerate throughput of a large mini-batch SGD training

○ Execute linear algebra at high throughput on an accelerator (XLA Compiler)

○ Execute fast gradient summation

● Increase availability of this large machine : the fire fighter approach

● Scalable launch of ML Ops

● Scalable weight initialization

● Optimized host input pipelines
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N-D Mesh/Torus Network Overview

● Nodes connected 2*n neighbors via 
bidirectional network links

● Optimized for near neighbor 
communication

● All-to-all traffic can be bisection 
limited
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Allreduce on a 2-D Torus

A1 A2 A3

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A4A1 A2 A3

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A4

Phase 0: Execute sums along columns
Phase 1: Execute sums along rows. 
Payload in phase 1 is scaled down by the 
size of the columns
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Communication Scaling on Multipods

Maximize

Minimize
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Scalability Techniques
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How do we scale training to this large system

● Compiler (XLA) automatically optimizes for scalability
○ Automatic fusion to overlap different computations
○ Automatic layout optimization to minimize data formatting
○ Automatic memory locality optimization to get most out of SRAM
○ Automatic cross replica optimization to maximize parallelism

● Simple API with compiler optimization to partition the model
○ Flexible annotation on a small part of the model
○ Automatic propagation to fully partition the model
○ Model compiled by SPMD to achieve good compile time and run time performance
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Inside a training step

Forward pass: 
conv/matmul + loop 
fusion

Backward pass: 
conv/matmul + loop 
fusion

All-reduce 
gradients Weight update

Typical image models: small weights, large input

Typical sequence models: large weights, small input
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Scalability bottleneck

Batch only affects forward/backward passes

Forward pass: 
conv/matmul + loop 
fusion

Backward pass: 
conv/matmul + loop 
fusion

Forward 
pass

Backward 
pass

All-reduce 
gradients Weight update

All-reduce 
gradients Weight update

Reduce batch size
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Memory-bound
Sensitive to number of optimizer’s slot variables 
(moving average, momentum, etc.)

Weight-update time sensitive to optimizers

Forward 
pass

Backward 
pass

All-reduce 
gradients Weight update

SGD:

ADAM:
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Weight-update sharding

● Weight and slot vars are sharded before training loop
● All-gather right before forward/backward passes
● Reduce-scatter on gradients
● Weight-update on shards
● An automatic optimization with no model change
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Weight-update sharding

● Performance
○ Weight-update takes much less time
○ In each step: 1 reduce-scatter Inside  + 1 all-gather roughly equals the cost of 1 all-reduce 
○ Automatically convert weight to BF16

■ Faster all-gather
■ Faster convolutions

● Memory saving
○ Slot vars are sharded, memory could be reused for activationsTr
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Weight-update sharding

SGD:

ADAM:
Weight-update 
sharding

● Step time will be less sensitive to optimizers: weight-update is already fast
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Use Model Parallelism for Small Batch per Core

Graph Partitioning: place subgraphs of operators across different cores (e.g. 
Inception)

Spatial Partitioning: partition individual operator (e.g. conv) across different cores 
(e.g., ResNet-like)

GPipe: place layers on different cores and pipeline the execution (e.g., RNN)

GShard: partition individual operator across different cores using data-parallelism 
(e.g., Xformer)

Ref: TPU Model Parallelism
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Spatial Partitioning for Image Models

● Halo exchange is required for overlapping windows
● Weights are replicated; only activations are partitioned

Kernel

Core 0 Core 1

Core 2 Core 3

Core 0 Core 1

Core 2 Core 3

An example of 4-way convolution partitioning 

tpu_config=tpu_config.TPUConfig(
    iterations_per_loop=100,
    num_shards=2,
    num_cores_per_replica=4,
    input_partition_dims=[[1, 2, 2, 1], None]]
)
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MLPerf 0.7 results
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Takeaways

● Scaling workloads to large systems is hard
● Fast and flexible interconnect is essential
● Software innovations can remove bottlenecks in scaling
● Model parallelism helps to further scale up

TPUs are available on 
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