Google Al Quantum

Applications and Challenges with Near-term Quantum Hardware

Jarrod McClean @JarrodMcClean 🈏 Senior Research Scientist

Early application areas

What is quantum?

"Classical"

"Quantum"

Quantum System – A physical system operated in a regime where we need effects like discrete energy levels and interference are required to accurately describe it.

Google AI Quantum

Simulation

Orrery

Antikythera Mechanism (125 B.C)

Google Al Quantum

Quantum System \rightarrow Quantum System

Quantum systems

Quantum simulation - the quantum advantage

Quantum computing abstraction

$$|0
angle = \left(egin{array}{c} 1 \\ 0 \end{array}
ight) \ |1
angle = \left(egin{array}{c} 0 \\ 1 \end{array}
ight)$$

$$X = \text{NOT} = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$X |0\rangle = |1\rangle$$
$$X |1\rangle = |0\rangle$$

Debunking quantum myths

MYTH 1: Faster/better because it can use an exponential number of states

MYTH 2: Faster/better because bits can be 0 and 1 at the same time.

MYTH 3: Work by computing all the answers in parallel

Challenges in quantum computation

Better Hardware

Co-Design Better Algorithms

Previous: Coherence time flexible

Future:

- Improved coherence time flexibility, novel property extraction, and demonstration
- Qubit number flexible algorithms and larger demonstrations

Thinking differently for speedups

Classical:

$$Ax = b$$

Solution translates to writing down the entries of \boldsymbol{x}

Quantum*:

$$A|x\rangle = |b\rangle$$

Solution translates to preparing state x from which one can sample

Solving the problem, not reproducing the classical algorithm!

*A. Harrow, A. Hassidim, S. Lloyd, Phys. Rev. Lett. **103**, 150502 (2009)

**B. D. Clader, B. C. Jacobs, and C. R. Sprouse Phys. Rev. Lett. 110, 250504 (2013)

Early application areas

Relation Representation

Google Al Quantum

Simulating Chemistry

Electronic structure

"The underlying physical laws necessary for the mathematical theory of a large part of physics and **the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

-Paul Dirac

But classical probability distributions...?

Google AI Quantum

$$P_1(\text{Store}_i) \qquad P_2(\text{Store}_j)$$
$$P_{12}(\text{Store}_i, \text{Store}_j) \neq P_1(\text{Store}_i) P_2(\text{Store}_j)$$
$$O(N^P)$$

Key caveat: Our distributions may be complex valued

attachment almost totally unknown

Classically – No clear path to accurate solution Quantum Mechanically – 150-200 logical qubits for solution

The road beyond supremacy

Quantum-Classical variational algorithms in a nutshell

Chemistry **Nuclear Physics Optimization** (QAOA) Machine learning Algorithm learning

Peruzzo⁺, McClean⁺, Shadbolt, Yung, Zhou, Love, Aspuru-Guzik, O'Brien. Nature Communications, 5 (4213):1–7,

† Equal Contribution by authors

A network in hardware

P.J.J. O'Malley, R. Babbush,..., J.R. McClean et al. "Scalable Simulation of Molecular Energies" Physical Review X 6 (3), 031007 (2016)

Displays natural error suppression

Displays natural error suppression

Implementation on Sycamore

fsim gate

Hydrogen chain to benchmark out device

Fidelity Witness

Supremacy
Error model

Google Al Quantum

Optimization Problems

- Possibility of quantum enhanced optimization has driven interest in the field
- This group has a storied history with optimization problems!
- Every industry would benefit from improvements
- Optimization is really hard!

Compiling complex cost functions

We can think of any 2-body C(x) as a graph

$$C = \sum_{i < j} w_{ij} Z_i Z_j$$

Google Al Quantum

$$\langle C \rangle = \langle + |U_C^{\dagger}(\gamma)U_B^{\dagger}(\beta) C U_B(\beta)U_C(\gamma)| + \rangle$$

Google Al Quantum

SK model, *n* = 11

Scaling with Depth

Gooale Al Quantum

- In the ideal noiseless case, increasing *p* increases performance
- With noise, there is a tradeoff
- Average performance peaks at p
 = 3
- On a per-instance basis, most peak at p = 3

Conclusions

- Quantum applications have unique challenges but we are rapidly making progress
- We have reached a system size where classical simulation becomes increasingly challenging/expensive
- These large devices require new technology, and control techniques, characterization methods
- Sycamore processor has ushered in the NISQ era with a new focus on practical algorithms for near term devices

Thank you!

