OmniCIM: A Sparsity-Aware Computing-in-Memory based Processor for Accelerating Arbitrary Quantized Neural Networks

Jianxun Yang¹, Yuyao Kong², Yiqi Wang¹, Zhao Zhang¹, Jing Zhou¹, Zhuangzhi Liu¹, Yonggang Liu¹, Chenfu Guo¹, Te Hu¹, Congcong Li¹, Leibo Liu¹, Jun Yang², Shaojun Wei¹, Shouyi Yin¹ ¹Tsinghua University, Beijing, China ²Southeast University, Nanjing, China

Outline

Background and Challenges

Proposed Processor

≻ Time-Domain Computing-in-Memory (CIM) to reduce computation power

➢Bit-sparsity-aware pulse computation to reduce computation amount

➢ Predictor to early-stop computation

□ Measurement Results

Background

Non-linear quantized DNNs have higher accuracy than linear quantized DNNs

k-bit quantization:

- w_i: High-bitwidth quantized actual weight (8b)
- di: Low-bitwidth quantization index (1~8b)

Background

Conventional convolution computation for LQ-DNNs on CIM-based accelerators

Challenge 1: High Computation Complexity

Use BLDC to accelerate NLQ-DNNs

High-precision actual weights have to be used for computation of NLQ-DNNs

3 Challenges

Quantization Type	Quantization interval	Convolution	BDDC	Decomposed computation term			
Linear	Equal	$itv.\times(\sum_{i=0}^{n-1}x_i)\times \overline{d_i}$	$itv. \times (\sum_{i=0}^{n-1} \mathbf{m}^{k} \mathbf{m}^{bit})$	More × , × , × , × , , × , , × , , × ,			
Non-linear	Unequal	$\sum_{i=0}^{n-1} \mathbf{X}_i \times \mathbf{W}_i$	$\sum_{i=0}^{n-1} (\mathbf{\mathbf{m}}_{x} \mathbf{\mathbf{b}}_{w} \mathbf$	▼			

Higher computation complexity

Challenge 2: Poor Adaptability to DNNs

The same computation complexity for different-precision NLQ-DNNs

Assume bit-segment size of activation (b_x) and weight (b_w) is 8 and 1

Challenge 3: High Memory Access and Latency

Proposed Processor for LQ- and NLQ-DNNs

Predictable Convolution Computation

Time-Domain CIM

based Processor

8

Dataflow

y = W∙X	= (-2)×2 +	2×1+1	imes2 + (-1) $ imes$	$2 + (-2) \times 4 = 2 \times 7$	1 + 1×2 + (-2)×	(4+2) +	(-1)×2 =	= -10 → F	ReLU = 0	
					= -8<()	= -2<	<0	Early-stop)
Kernel Size	# of weights in one kernel	Macros for one kernel	Computed kernels concurrently	Input feature	Predi	ct output	activatio	on would b	e negative	Time
Large	2305~4608	4	1	map			۸°		1	<u>^'</u>
Medium	1153~2304	2	2	Kernel	K ₀	K	(1	K ²	K ^{m-1}	K ⁰
Small X ⁰ X ¹ Inpu featu ma	1~1152	1 K ⁰ K ¹ <i>Y</i> m K ^{m-1} nel	4 y ⁰ _m y ⁰ ₀ y ¹ ₀ Output feature map	Search weight Associative kernel Output activation	W0 W1 Ws-1 B_0^0 B_1^0 \dots B_{s-1}^0 y_0^0 y_0^0	W0 W1 B ¹ ₀ B ¹ ₁ O Succes	Ws-1 skip B ¹ _{s-1} skip y ⁰ ₁ sful pr	W ₀ B ₀ ² diction	W0 Ws-1 B_0^{m-1} B_{s-1}^{m-1}	$W_0 \dots B_0^0 \dots$
Flexible kernel mapping to achieve 100% CIM utilization				n		Input reuse	Statio activa	nary to ations		

Time-Domain CIM

Four-level voltage modulates pulse width

10

Time-Domain CIM

1152 MACs are computed in one CIM MACRO

Computation mapping in CIM MACRO

Bit-Sparsity-Aware Pulse Computation

Measurement Results

Support 1-8b LQ- and NLQ-DNNs

2.4-152.7 TOPS/W peak energy efficiency

CHIP SUMMARY					
Process (nm)	28				
Supply Voltage (V)	0.55-1.05				
Frequency (MHz)	50-170				
Die Size (mm)	2.35*3.07				
Weight Precision	1-8 b				
Quantization Type	Linear & Non-linear				
Power (mW)	4.3-33.8				
Peak Energy Efficiency (TOPS/W)	2.4-152.7				

VGG16 Accuracy on ImageNet (8b activation)										
Quantization Type		Lin	ear		Non-Linear					
Quantization Bitwidth	1b	2b	4b	8b	1b	2b	4b	8b		
Top-1 Accuracy (%)	65.1	67.5	70.1	71.9	67.3	69.8	71.5	72.1		

Measurement Results

Improvement of energy efficiency: 2.59x for LQ-DNNs, 2.15x for NLQ-DNNs

Reference		ISSCC 2018 [4]	ISSCC 2018 [5]	ASSCC 2016 [5]	ISSCC 2019 [7]	ISSCC 2019 [8]	This work	
Tech. [nm]		65	65	65	28	55	28	
Circuit		Voltage	CIM	Time	Digital	Voltage	Digital + CIM	
Die Ar	ea [mm²]	0.067	1.44	3.61	2.7	0.037	7.21	
Supply \	Voltage [V]	0.9-1.2	0.65-1	-	0.6-1.1	-	0.55	-1.05
Max Frequency [MHz]		6.7	1000	-	475	-	170	
Weight Precision		1b	1b	1b	Arbitrary	1-4b	1-8b	
Activation Precision		7b	8b	1b	Arbitrary	1-5b	8b	
Peak Throughput [GOPS]		10.7	-	-	32.7	-	246.3	
Benchmark		LeNet-5	SVM	LeNet-5	Addition	MNIST	VGG16 ⁴	AlexNet
Energy Efficiency [TOPS/W]	Linear ¹	28.1 @ (1,7)	3.13 @ (1,8)	48.20 @ (1,1)	5.27 @ (8,8)	72.1 @ (2,1) 18.37 @ (5,2)	63.64 @ (1,8) 27.17 @ (2,8) 9.65 @ (4,8)	56.71 @ (1,8) 32.34 @ (2,8) 8.96 @ (4,8)
	Linear ² Normalized	24.6 @ (1,8)	3.13@ (1,8)	6.03@ (1,8)	5.27 @ (8,8)	18.03 @ (1,8) 4.51 @ (4,8)		
	Non-linear ³	3.07 @ (*,8)	0.39 @ (*,8)	0.75@ (*,8)	5.27 @ (*,8)	2.87 @ (*,8)	65.89 @ (1,8) 11.32 @ (4,8)	58.37 @ (1,8) 9.98 @ (4,8)

[4] A. Biswas, et al., ISSCC, 2018.[6] A. Sayal, et al., ISSCC, 2019.

[5] S. K. Gonugondla, et al., ISSCC, 2018.

9. [7] J. Wang, et al., ISSCC, 2019. [8] X. Si, et al., ISSCC, 2019.

Thank you!