A 3.2 Gbps/pin HBM2E PHY with Low Power I/O and Enhanced Training Scheme for 2.5D System-in-Package Solutions

Sangyun Hwang, Kwanyeob Chae, Taekyung Yeo, Sangsoo Park, Won Lee, Shinyoung Lee, Soo-Min Lee, Kihwan Seong, Eunkyoung Ha, Eunsu Kim, Jihun Oh, Kyoung-Hoi Koo, Sanghune Park, Jongshin Shin

Foundry Business, Samsung Electronics, Korea

A 3.2 Gbps/pin HBM2E PHY with Low Power I/O and Enhanced Training Scheme for 2.5D System-in-Package Solutions

Abstract

- Low power I/O scheme (1.07 pJ/bit@write operation)
 - Minimize the number of blocks using VDDQ power
- Training scheme using redundancy bits (~7% VWM gain)
 - Redundancy pins are used as candidates@initial training

Outline

Introduction

- HBM introduction and test chip for HBM2E PHY
- Low power I/O
 - Structure of driver and receiver
- Training scheme considering redundancy pins
 - Training flow chart
- Measurement Results
 - Implementation and power measurement results
 - Valid window margin results

Introduction

• HBM2E (High Bandwidth Memory) [1,2]

- → 1024 pins@>2.8Gbps (>358.4GB/s), 128bit/channel, 32bit/DQS
- → 8CH/device (VDDQ (1.2V), VDDC(1.2V))
- \rightarrow # of stack/chip: 4H/8H
- \rightarrow Application: HPC, Server

[1] JEDEC Standard High Bandwidth Memory (HBM) DRAM Specification, Standard JESD235B, 2015.

[2] Dong Uk Lee et al., "A 1.2 V 8 Gb 8-Channel 128 GB/s High-Bandwidth Memory (HBM) Stacked DRAM With Effective I/O Test Circuits", IEEE Journal of Solid-State Circuits, Vol.50, Issue 1, 2015, pp. 191-203.

Test chip for HBM2E PHY

Test chip structure

 \rightarrow Two test chips and one HBM memory chip are integrated on

single silicon interposer

→ Test chip includes one HBM2 PHY for 4CH and

test logics such as traffic generator and memory controllers

 \rightarrow Traffic generator has several DMAs and one RTIC*

* RTIC (Run Time Integrity Checker)

Outline

Introduction

- HBM introduction and test chip for HBM2E PHY

- Low power I/O
 - Structure of driver and receiver
- Training scheme considering redundancy pins
 - Training flow chart
- Measurement Results
 - Implementation and power measurement resultsValid window margin results

Low power I/O

- Minimize the number of blocks using VDDQ power by moving level shifter (LS) from input side of pre-driver to output side [3]
- Receiver uses only VDD power and it is designed to minimize the number of stages (2stage)

[3] Soo-Min Lee et al., "A 0.6V 4.266Gb/s/pin LPDDR4X Interface with Auto-DQS Cleaning and Write-VWM Training for Memory", ISSCC, 2017, pp. 397-399.

A 3.2 Gbps/pin HBM2E PHY with Low Power I/O and Enhanced Training Scheme for 2.5D System-in-Package Solutions

Training scheme including redundancy pins

- Motivation is to reduce performance variation among DQ pins which can be caused by PI (Power Integrity) and SI (Signal Integrity)
- Main idea is to include redundancy pins when performing training even though there are no defects

Outline

Introduction

- HBM introduction and test chip for HBM2E PHY
- Low power I/O
 - Structure of driver and receiver
- Training scheme considering redundancy pins
 - Training flow chart
- Measurement Results
 - Implementation and power measurement results
 - Valid window margin results

Implementation results

- Test chip size is 5 x 3.55 mm² and implemented with 7nm fabrication process
- Two chips and one HBM memory are integrated on single interposer
- Except for training block, HBM PHY with IO for 4CH is 1.6 x 3 mm²

Power and VWM measurement results

1.07 pJ/bit @ write operation (HM and I/O)

0.75V/1.2V/8CH	WRITE	READ	IDLE
HM	810	1480	36
I/O	2700	1130	14
Energy [pJ/b]	1.07	0.56	0.02

Approximately 7% VWM enhancement

Conclusion

• 3.2Gbps/pin HBM2E PHY is implemented in 7nm

 \rightarrow PHY is verified on 2.5 SiP test chip

Low power I/O

 \rightarrow Minimize the number of blocks using VDDQ

Performance

 \rightarrow Training scheme including redundancy pins

I.07pJ/bit@WRITE and 7% VWM enhancement