

Hot Chips Poster Session

A Fully Integrated Genetic Variant Discovery SoC for Next-Generation Sequencing

Y.-C. Wu¹, Y.-L. Chen¹, C.-H. Yang¹, C.-H. Lee², C.-Y. Yu³, N.-S. Chang³, L.-C. Chen³, J.-R. Chang³, C.-P. Lin³, H.-L. Chen³, C.-S. Chen³, J.-H. Hung², C.-H. Yang¹ ¹National Taiwan University, ²National Chiao Tung University, ³Taiwan Semiconductor Research Institute

Abstract

This work presents the first dedicated system-on-chip (SoC) that supports full data analysis workflow for next-generation sequencing (NGS) data analysis. The SoC implements four major steps: preprocessing, short-read mapping, haplotype calling, and variant calling. This work achieves comparable precision as the software solutions by adopting the sBWT and Genome Analysis ToolKit Haplotype Caller (GATK-HC) algorithms. The multitask sorting engine (MTSE) and the dynamic programming processing engine (DPPE) are proposed for essential computing tasks for NGS data analysis. An Synopsys ARC processor is integrated to facilitate IO interfaces, including DDR3 and SD card protocols. Fabricated in a TSMC 28nm technology, the chip area is 12mm². It dissipates 975mW at a clock frequency of 400MHz from a 0.9V supply. The SoC can complete full analysis for whole human genome in 37 minutes. Compared to an optimized GPU solution, this work is 66x faster, and achieves more than $15,000 \times$ and $3,000 \times$ higher in energy and area efficiency. The prototype system demonstrates the analysis in real-time for on-site DNA sequencing.

Demonstration Video:

https://www.youtube.com/playlist?list=PLm0H1AD1FScj4c7tWiOUaTkENqCjrmvCT

Next-Generation Sequencing (NGS)

• NGS

- Growing market value (>\$15 BN by 2025)
- Extensive applications: non-invasive prenatal test, quick virus test, cancer screening, targeted medicine, biotechnology research

NGS Data Analysis

- Length of DNA sequence: 3 billion (base pair)
- Amount of short reads: hundreds of millions
- Raw data to be processed: up to TB
- Analysis time: 3 days (optimized GPU)

Technical Breakthrough

- First dedicated SoC for entire NGS data analysis workflow
 - Fast NGS data analysis
 - -3 days (GPU) \rightarrow 40 mins (this work)
 - Low power dissipation: < 1W
 - GUI for real-time status monitoring

NGS Data Analysis Workflow

TGG

- NGS Data Analysis Steps
 - Preprocessing
 - Short-Read Mapping
 - Haplotype Calling
 - Variant Calling
- Low Memory Requirement
 - sBWT Algorithm
- **High Precision**
 - Genome Analysis Toolkit Haplotype Caller (GATK HC)
- **Standard File Format**
 - Input: Raw Sequenced Data
 - **Output: Discovered Variants**

National Taiwan University

System Architecture and Design Optimization

Key Features

- Heterogeneous Computing Platform
 - Embedded Synopsys ARC HS34 processor
 - Dedicated NGS Data Analysis Accelerator

Multitask Sorting Engine

- Cascaded and parallel architecture for low latency data movement
- Hardware sharing for area reduction

Dynamic Programming Processing Engine

- Support global, semi-global, local alignment
- Area reduction: 1-dimentinal PE array

National Taiwan University

Yi-Chung Wu et al.

Multitask Sorting Engine (MTSE)

Supporting Functions

- Preprocessing: grouping, sorting
- Haplotype Calling: *de Bruijn* graph, assembly

Key Features

- Cascaded parallel architecture
- 1-cycle latency
- Self-defined data format

Overall Architecture

Grouping

Dynamic Programming Processing Engine (DPPE)

Supporting Functions

- Short-Read Mapping: global alignment
- Variant Calling: semi-global alignment
- Viterbi Algorithm: local alignment
- Design Techniques
 - 2D systolic array \rightarrow 1D cascaded architecture
 - Hardware Shared

National Taiwan University

Chip Implementation and Performance Comparison

Core Area		3.63 x 2.63 mm ²	
Gate Count		19.5 M	
Core V _{DD}		0.9 V	
Embedded SRAM		448 KB	
Analysis Time	Chromosome 10	1.2 mins	
	Whole genome	37 mins	
Precision*		99.6%	

*verified with PrecisionFDA Truth benchmark [1]

Pr Tr	ecisio uth Cł	nFDA nallen	ge our community challe	7855
	HIGHEST	-SNP-PEF	RFORMANC	E
-	HIGHEST	-SNP-REG	CALL	
-	HIGHEST	-SNP-PRE	ECISION	
4	HIGHEST	-INDEL-P	ERFORMAN	NCE
-	HIGHEST	-INDEL-R	ECALL	
-	HIGHEST	-INDEL-P	RECISION	

	NVIDIA GK110B [2]	This Work [3]
Technology	28nm	28nm
Chip Area [mm ²]	561	12
Clock Freq. [MHz]	705	400
Power [W]	235	0.975
External Memory	12GB GDDR5	1GB DDR3
Analysis Time [s]	4687	71 66x ↓
Energy Efficiency [task(s)/J]	9.1 x 10 ⁻⁷	1.4 x 10 ⁻² >15,000x ↑
Area Efficiency [task(s)/s/mm²]	3.8 x 10 ⁻⁷	1.2 x 10 ⁻³ >3,000x ↑

[1] https://precision.fda.gov/challenges

[2] S. Ren *et al.*, "GPU-Accelerated GATK Haplotype Caller with Load-Balanced Multi-Process Optimization," *IEEE Int. Conf. Bioinformatics Bioengineering*, 2017.

[3] Y.-C. Wu *et al.*, "A Fully Integrated Genetic Variant Discovery SoC for Next-Generation Sequencing," *ISSCC*, 2020.

National Taiwan University

System Demonstration

Demonstration Setup

GUI

Summary

- First dedicated SoC for entire NGS data analysis workflow
- Optimized hardware architecture
 - Multitask sorting engine
 - Dynamic programming processing engine
- SoC integration in 28nm CMOS
 - ARC processor, NGS data analysis accelerator, DRAM controller, PLL
 - <1W power consumption at 400MHz
- Orders of magnitude improvement over GPU
 - Processing time: 66x faster
 - Energy efficiency: >15,000x higher
 - Area efficiency: >3000x higher