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Scaling deep learning: more compute is all you need

🤔 How can we scale training hardware to such large models?

New co-design philosophy: hardware for learning beyond backpropagation

👏 Enabling larger models will benefit deep learning.

🦾🧠
novel training methods dedicated hardware

inform the design of…

…enables the use/scaling of

alternatives to backpropagation 
with compelling characteristics

advanced technologies targeting 
specific operations and processes
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compute (PFLOPs day) [2]

🔥 Neural networks are growing larger… 175 billion trainable parameters in GPT-3!
[2]

✅ Staggering correlation between size and performance.[1]
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OPU: the first at scale photonic co-processor in the cloud

🦾 On the hardware side…

🎓 Leveraging holography to retrieve a linear random projection.

🧠 On the training side…

💡 Direct Feedback Alignment (DFA)… scales to modern deep learning tasks and architectures. 
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🎉 Photonic training demonstrated on MNIST: more coming soon, holographic photonic core OPU pre-release end of 2020.

.

[4] [5]

📈 1Mx300k random projection in 1.25ms with less than 40W…
up to 2 trillions parameters per RP, equivalent to ~1 petaOPS with 2TB cache memory in a non-von Neumann architecture.

with expected x10 performance every 2 years.

🥳  parallelized backward pass
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💡 Multiple light scattering through a diffusive medium provides massively parallel random projections! [3]



.
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5-7 Training neural networks with Direct Feedback Alignment

slides

Holography and photonic for linear random projections8-9

Light-in-the-loop: photonic training of neural networks1O

                       Light-in-the-loop: poster overview



🤔
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💳 Training a neural network is a credit assignment problem: find which neurons are to blame for the error at the output.

🚨 Backpropagation is the canonical training method, and assigns blame precisely to each neuron.

🙅 But doing so brings practical limitations (e.g. no parallelization of the  backward pass) and is not biologically plausible. 

Can we train neural networks differently?
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error

loss

Wn Wn+1

alternative methods can combine 
computational and biological motivations

[6]

Training neural networks the usual way:  backpropagation of the error (BP)



Training neural networks with…  direct feedback alignment (DFA)
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input output error
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🧠 Biologically-inspired (weight transport problem): uses random weights to deliver feedback from global loss.

🦾 Puts a single random projection at the cornerstone of training and enables parallelization of the backward pass.
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gradient signal from layers above random projection of the loss gradient
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i e)T > 0 ⇒ DFA update within 90° of BP

(going roughly in the right direction is enough)

can be enforced by tuning            : Wi+1 learned alignment of the forward weights.

[4]

🎓 Mathematical intuition:



DFA scales to modern deep learning tasks and architectures 
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🙋 Is DFA as versatile as BP as a training method?

✅ Graph Convolutional Neural Networks

t-SNE of graph embeddings learned with DFA.

✅ Neural scene modeling with NeRF

Synthetic 3D scene learned with SOTA methods.

✅ Massive hybrid Transformer architectures

DFA and BP can be mixed to accelerate the training 
of large architectures with limited accuracy cost.

📝 Further research work is needed to improve theory of DFA and build principled training methods.
BP has its own tricks: dropout, batch normalization, etc.

👌 Hybrid strategies (DFA+BP) can work out of the box in large architectures. 

[5]

🧐 One caveat: DFA doesn’t work on convolutional layers (yet!)
[7, 8]
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OPU: a photonic co-processor for random projections

💡 Leveraging photonics brings a number of advantages:

🔀 Massively parallel processing, with the entire projection computed at once;

♾ Very high dimensional input and output, with easy scaling;

⚡ Energy-efficient hardware, as the computation is mostly passive.

💪 OPUs have already been demonstrated in a diverse set of use cases: 

⌨ Easy-to-use, the photonics are abstracted away: opu.transform1d(x)

equivalent to millions of cores

up to 1Mx2M random projection

only 30W for the packaged system

in Python; can use Numpy/PyTorch arrays.

✅ Molecular dynamics studies

Anomaly detection on SARS-CoV-2 glycoprotein.

✅ Theoratical analysis of NNs

Recovering the double descent curve.

✅ Reinforcement learning

Playing PacMan with model-free RL. 

[9] [10] [11]

: the first and only photonic machine learning co-processor available in the cloud now! 



 9

Going linear with an holographic photonic core

🚀 We leverage holography to recover a linear operation from non-linear measurements.

✨ The magic: technology stack remains identical, enabling fast iterations. 

💭 Massive potential for optical linear random projections:

🗓 Pre-release of holographic photonic core OPU in the cloud end of 2020.

🤔 Current OPUs deliver a non-linear random projection,               not suitable for all applications.|Bx |
2

in active development (this poster!)

✅  Randomized linear algebra

Localized sketching to 
 compress large data streams.

✅  Optical training

Optical Direct Feedback Alignment 
 to train neural networks.
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Light-in-the-loop: photonic training of neural networks

💡 Implement the random projection of DFA optically: 

🎂 Agnostic to neural network architecture: can be widely applied, beyond largest architectures in deep learning. 

input output
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a single optical random projection to train the entire network: we take slices for each layer

📈 Demonstrated on MNIST, with scaling to other tasks and architectures coming soon.
95.8% accuracy vs 97.7% on GPU for considered architecture

🎉 The first time a neural network is trained with light-in-the-loop!

💡
operation performed with OPU

operation performed with GPU
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Conclusion and outlooks

🎉 The first time a neural network is trained with light-in-the-loop: 

🗓 Pre-release of holographic photonic core OPU in the cloud end of 2020.

: OPUs are the first and only photonic machine learning co-processor available in the cloud now! 
More information at cloud.lighton.ai, including on our research program.

♾ Our accelerator is architecture-agnostic and scales to layers comprising millions of parameters.

🧠 We leverage learning beyond backpropagation to enable the use of advanced photonic hardware;

💡Interested in knowing more about our technology?
Check-out our white paper at lighton.ai!

https://lighton.ai/wp-content/uploads/2020/05/LightOn-White-Paper-v1.0-S.pdf
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