The 32nd Hot Chips Symposium LIGHT-IN-THE-LOOP: USING A PHOTONICS CO-PROCESSOR FOR SCALABLE TRAINING OF NEURAL NETWORKS

Julien Launay ^{1,2}, Iacopo Poli ¹, Kilian Müller ¹, Igor Carron ¹, Laurent Daudet ¹, Florent Krzakala ^{1,2}, Sylvain Gigan ^{1,3} Contact: {firstname}@lighton.ai

Laboratoire de Physique de l'École Normale Supérieure ² Laboratoire Kastler Brossel ³

Scaling deep learning: more compute is all you need

New co-design philosophy: hardware for learning beyond backpropagation

inform the design of...

novel training methods

alternatives to backpropagation with compelling characteristics

- Neural networks are growing larger... 175 billion trainable parameters in GPT-3!
- Staggering correlation between size and performance.^[1]
 - Enabling larger models will benefit deep learning.
 - How can we scale training hardware to such large models?

advanced technologies targeting specific operations and processes

...enables the use/scaling of

()))))))) ABSTRACT

Light🕄n

Light OPU: the first at scale photonic co-processor in the cloud

Con the hardware side...

- Leveraging holography to retrieve a linear random projection.

1Mx300k random projection in 1.25ms with less than 40W... with expected x10 performance every 2 years. up to 2 trillions parameters per RP, equivalent to ~1 petaOPS with 2TB cache memory in a non-von Neumann architecture.

On the training side...

Pirect Feedback Alignment (DFA)...^[4] scales to modern deep learning tasks and architectures.^[5]

it is the province the presented on MNIST: more coming soon, holographic photonic core OPU pre-release end of 2020.

Wultiple light scattering through a diffusive medium provides massively parallel random projections!

BP feedbac

Replace BP updates,

 $\delta \mathbf{W}_i = -\left[\left(\mathbf{W}_{i+1}^T \delta \mathbf{a}_{i+1}\right) \odot f'_i(\mathbf{a}_i)\right] \mathbf{h}_{i-1}^{\mathrm{T}}$

with a random projection of the error, $\delta \mathbf{W}_i = -\left[\left(\mathbf{B}_i^T \mathbf{e}\right) \odot f'_i(\mathbf{a}_i)\right] \mathbf{h}_{i-1}^T$ performed with light

4

Light-in-the-loop: poster overview

slides 5-7

Training neural networks with Direct Feedback Alignment

$\mathbf{8}$ Holography and photonic for linear random projections

Light-in-the-loop: photonic training of neural networks

Training neural networks the usual way: **backpropagation** of the error (BP)

Training a neural network is a credit assignment problem: find which neurons are to blame for the error at the output.

Backpropagation is the canonical training method, and assigns blame precisely to each neuron.

😤 But doing so brings practical limitations (e.g. no parallelization of the backward pass) and is not biologically plausible.

alternative methods can combine computational and biological motivations

Can we train neural networks differently?

Training neural networks with... direct feedback alignment (DFA)

Siologically-inspired (weight transport problem): uses random weights to deliver feedback from global loss.

Leave Puts a single random projection at the cornerstone of training and enables parallelization of the backward pass.

***** Mathematical intuition: $(\mathbf{B}_{i}^{T}\mathbf{e})^{T}(\mathbf{W}_{i+1}^{T}\delta\mathbf{a}_{i+1}) > 0 \Rightarrow \text{DFA update within 90° of BP}$ (going roughly in the right direction is enough)

can be enforced by tuning W_{i+1} : *learned* alignment of the forward weights.

DFA scales to modern deep learning tasks and architectures

Synthetic 3D scene learned with SOTA methods.

One caveat: DFA doesn't work on convolutional layers (yet!)

Further research work is needed to improve theory of DFA and build principled training methods.

Hybrid strategies (DFA+BP) can work out of the box in large architectures.

V Neural scene modeling with NeRF

Massive hybrid Transformer architectures

DFA and BP can be mixed to accelerate the training of large architectures with limited accuracy cost.

[7, 8]

BP has its own tricks: dropout, batch normalization, etc.

Light OPU: a photonic co-processor for random projections

Vertication of the second strain of the second s **Massively parallel processing**, with the entire projection computed at once; ∞ Very high dimensional input and output, with easy scaling; Energy-efficient hardware, as the computation is mostly passive. OPUs have already been demonstrated in a diverse set of use cases: Molecular dynamics studies V Theoratical analysis of NNs

SARS-CoV-2 glycoprotein simulation	Changepoint detection (NEWMA-OPU)
initialized in a cloved state (60703)	Charge of conformation - Video
	0 1 2 3 4 5 6 7 8 Time (µ)
24 Brack	Light

0.8 0.4

Anomaly detection on SARS-CoV-2 glycoprotein.

Light n: the first and only photonic machine learning co-processor <u>available in the cloud now</u>!

Recovering the double descent curve.

equivalent to millions of cores up to 1Mx2M random projection only 30W for the packaged system

Reinforcement learning^L

Playing PacMan with model-free RL.

Easy-to-use, the photonics are abstracted away: opu.transform1d(x) in Python; can use Numpy/PyTorch arrays.

Light🕄n

Going linear with an holographic photonic core

 \bigcirc Current OPUs deliver a non-linear random projection, $|\mathbf{Bx}|^2$ not suitable for all applications.

We leverage holography to recover a linear operation from non-linear measurements.

the magic: technology stack remains identical, enabling fast iterations.

Massive potential for optical linear random projections:

Randomized linear algebra

Localized sketching to compress large data streams.

Pre-release of holographic photonic core OPU in the cloud end of 2020.

Light-in-the-loop: photonic training of neural networks

Implement the random projection of DFA optically:

Agnostic to neural network architecture: can be widely applied, beyond largest architectures in deep learning.

Demonstrated on MNIST, with scaling to other tasks and architectures coming soon. 95.8% accuracy vs 97.7% on GPU for considered architecture

Conclusion and outlooks

Light n: OPUs are the first and only photonic machine learning co-processor <u>available in the cloud now</u>! More information at <u>cloud.lighton.ai</u>, including on our research program.

W The first time a neural network is trained with light-in-the-loop:

Pre-release of holographic photonic core OPU in the cloud end of 2020.

Interested in knowing more about our technology? **<u>Check-out our white paper at lighton.ai!</u>**

- We leverage learning beyond backpropagation to enable the use of advanced photonic hardware;
- ∞ Our accelerator is architecture-agnostic and scales to layers comprising millions of parameters.

References

- preprint arXiv:2005.14165, 2020.
- arXiv:2001.08361, 2020.
- 1037 1045, 2016.
- arXiv preprint arXiv:2006.12878, 2020.
- science, pages 1–12, 2020.
- arXiv:1906.04554, 2019.

- 2020.

[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. arXiv

[2] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint

[3] Alaa Saade, Francesco Caltagirone, Igor Carron, Laurent Daudet, Angélique Drémeau, Sylvain Gigan, and Florent Krzakala. Random projections through multiple optical scattering: Approximating kernels at the speed of light. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6215–6219. IEEE, 2016.

[4] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances in neural information processing systems, pages

[5] Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment scales to modern deep learning tasks and architectures.

[6] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backpropagation and the brain. Nature Reviews Neuro-

[7] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lillicrap. Assessing the scalability of biologicallymotivated deep learning algorithms and architectures. In Advances in Neural Information Processing Systems, pages 9368–9378, 2018.

[8] Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct feedback alignment. arXiv preprint

[9] Amélie Chatelain, Giuseppe Luca Tommasone, Laurent Daudet, and Iacopo Poli. Online change point detection in molecular dynamics with optical random features. arXiv preprint arXiv:2006.08697, 2020.

[10] Alessandro Cappelli. Random projections did it again, April 2020.

[11] Martin Graive. Tackling reinforcement learning with the aurora opu, May

see https://medium.com/@LightOnlO

