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Scaling deep learning: more compute is all you need
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» L &% Neural networks are growing larger... 175 billion trainable parameters in GPT-3!
=
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i 10, Staggering correlation between size and performance.
£ N % Enabling larger models will benefit deep learning.
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g L=257.c-o0s N  How can we scale training hardware to such large models?
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compute (PFLOPs day) [2]

New co-design philosophy: hardware for learning beyond backpropagation

inform the design of...

novel training methods dedicated hardware
alternatives to backpropagation advanced technologies targeting
with compelling characteristics specific operations and processes

I

...enables the use/scaling of Lig ht™n
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Light©n OPU: the first at scale photonic co-processor in the cloud

£ On the hardware side...

. Multiple light scattering through a diffusive medium provides massively parallel random projections! .

@ Leveraging holography to retrieve a linear random projection.

~ 1Mx300k random projection in 1.25ms with less than 40W... with expected x10 performance every 2 years.
up to 2 trillions parameters per RP, equivalent to ~1 petaOPS with 2TB cache memory in a non-von Neumann architecture.
& On the training side...

- : [4] . .
. Direct Feedback Alignment (DFA)... scales to modern deep learning tasks and architectures.”
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&3 parallelized backward pass

& Photonic training demonstrated on MNIST: more coming soon, holographic photonic core OPU pre-release end of 2020.
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Light-in-the-loop: poster overview

slides

5—7 Training neural networks with Direct Feedback Alignment

8-9 Holography and photonic for linear random projections

1 o Light-in-the-loop: photonic training of neural networks
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Training neural networks the usual way: of the error (BP)

= Training a neural network is a : find which neurons are to blame for the error at the output.

& Backpropagation is the , and assigns blame precisely to each neuron.

[6]
& But doing so brings practical limitations (e.g. no parallelization of the backward pass) and is not biologically plausible.
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Can we train neural networks differently?

alternative methods can combine
computational and biological motivations
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[4]
Training neural networks with... direct feedback alignment (DFA)

< Biologically-inspired (weight transport problem): uses random weights to deliver feedback from global loss.

is Puts a single random projection at the cornerstone of training and enables parallelization of the backward pass.

input ------- > — — | | ------- » output i error
Wn Wn+1

gradient signal from layers above random projection of the loss gradient

SWH = — [(W] 6a,,)) @ fl(a)lh, —> sWPM = —[(B]e) O fi(a)lhl
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@ Mathematical intuition: (Bl-Te)T(Wl +1

oa,, ;) > 0 = DFA update within 90° of BP
(going roughly in the right direction is enough)

can be enforced by tuning W, 4+ 1: learned alignment of the forward weights.
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DFA scales to modern deep learning tasks and architectures

. . [5]
& Is DFA as versatile as BP as a training method?
Graph Convolutional Neural Networks Neural scene modeling with NeRF Massive hybrid Transformer architectures
‘ x rT‘-OET ANSFORMER T 1 k
' ( mliom )I
( : mm,;k ‘ ) ............ , D(:(oosk ............
i i , , DFA and BP can be mixed to accelerate the trainin
t-SNE of graph embeddings learned with DFA. Synthetic 3D scene learned with SOTA methods. g

of large architectures with limited accuracy cost.

[7, 8]
@ One caveat: DFA doesn’'t work on convolutional layers (yet!)

 Further research work is needed to improve theory of DFA and build principled training methods.

BP has its own tricks: dropout, batch normalization, etc.

<) Hybrid strategies (DFA+BP) can work out of the box in large architectures.
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Light<>n OPU: a photonic co-processor for random projections

. Leveraging photonics brings a number of advantages:

-z Massively parallel processing, with the entire projection computed at once; equivalent to millions of cores
oo Very high dimensional input and output, with easy scaling; up to 1Mx2M random projection
Energy-efficient hardware, as the computation is mostly passive. only 30W for the packaged system

.. OPUs have already been demonstrated in a diverse set of use cases:

[9] [10] [11]

Molecular dynamics studies Theoratical analysis of NNs Reinforcement learning
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* . . ® g oon  osann !
Analyzing conformations with a LightOn OPU e |

Light®n

0.1 1
N>
o 5000 10000 15000 20000

25000 30000 35000 40000

Anomaly detection on SARS-CoV-2 glycoprotein. Recovering the double descent curve. Playing PacMan with model-free RL.

= Easy-to-use, the photonics are abstracted away: opu.transform1d(x) in Python; can use Numpy/PyTorch arrays.

Light<®n: the first and only photonic machine learning co-processor available in the cloud now!

LOUD
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Going linear with an holographic photonic core

& Current OPUs deliver a non-linear random projection, | Bx \2 not suitable for all applications.
% We leverage holography to recover a linear operation from non-linear measurements.
The magic: technology stack remains identical, enabling fast iterations.

.. Massive potential for optical linear random projections:
in active development (this poster!)

Randomized linear algebra Optical training

v” n
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%5 parallelized backward pass

Localized sketching to Optical Direct Feedback Alignment
compress large data streams. to train neural networks.

. Pre-release of holographic photonic core OPU in the cloud end of 2020.
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Light-in-the-loop: photonic training of neural networks

. Implement the random projection of DFA optically:

W Wn+1

operation performed with OPU

operation performed with GPU

B Bn+1 5 <

a single optical random projection to train the entire network: we take slices for each layer

“ Agnostic to neural network architecture: can be widely applied, beyond largest architectures in deep learning.

~/ Demonstrated on MNIST, with scaling to other tasks and architectures coming soon.
95.8% accuracy vs 97.7% on GPU for considered architecture

£: The first time a neural network is trained with light-in-the-loop!
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Conclusion and outlooks

Light<®n: OPUs are the first and only photonic machine learning co-processor available in the cloud now!
e More information at cloud.lighton.ai, including on our research program.

£+ The first time a neural network is trained with light-in-the-loop:
& We leverage learning beyond backpropagation to enable the use of advanced photonic hardware;

co Qur accelerator is architecture-agnostic and scales to layers comprising millions of parameters.

. Pre-release of holographic photonic core OPU in the cloud end of 2020.

Interested in knowing more about our technology?
Check-out our white paper at lighton.at!
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https://lighton.ai/wp-content/uploads/2020/05/LightOn-White-Paper-v1.0-S.pdf
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