

The Fungible DPU[™]:

A New Category of Microprocessor for the Data-Centric Era

Hot Chips 2020

Our Mission

Revolutionize the **performance**, **economics**, **reliability** and **security** of all scale-out data centers

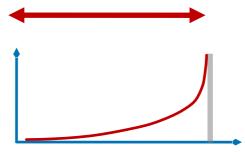
Core Technology: a new category of microprocessor called the **Fungible DPU™**, associated software, and systems

Context

Problems Facing Data Centers

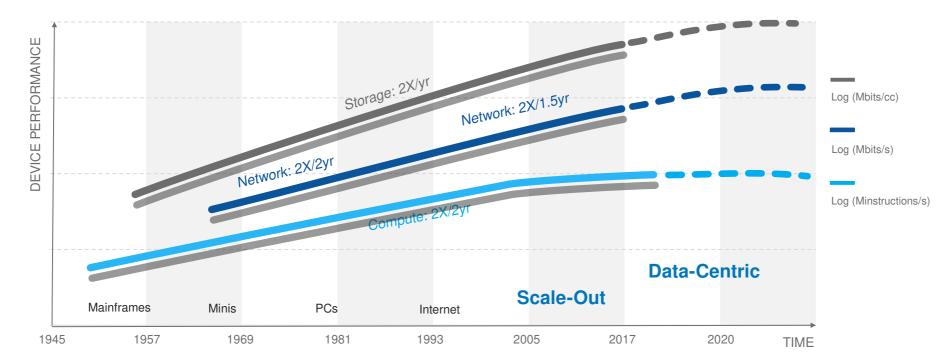
Large footprint (power and space)

Inability to pool expensive resources
Inefficient execution of *Data-Centric Computations*

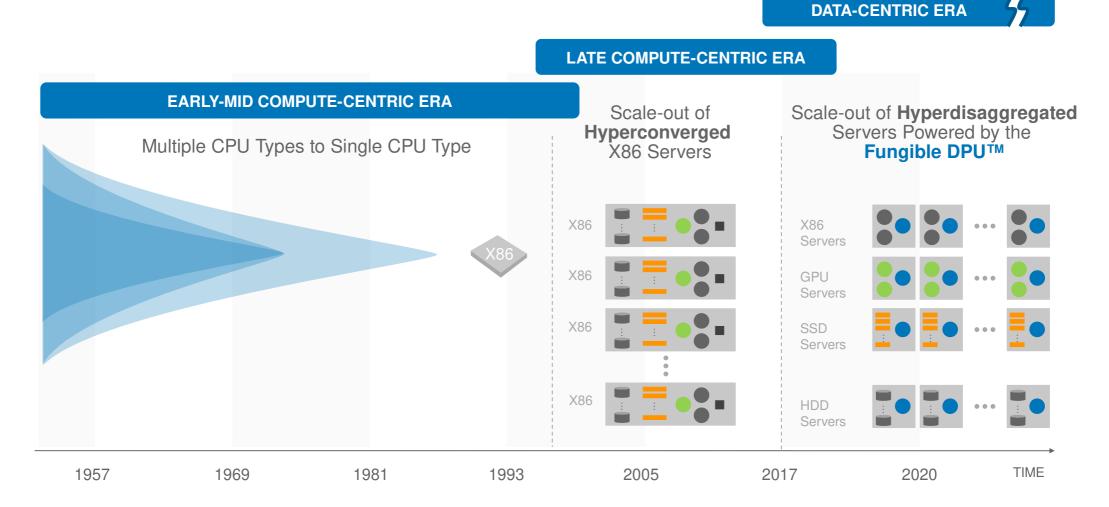

Scaling challenges (very small & very large)

Increasing complexity (technology limits)

Security vulnerabilities


Headwinds

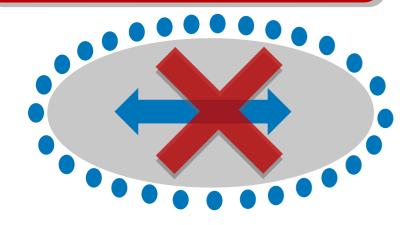
Network and storage speeds are increasing faster than compute


Applications need to access ever larger data sets

Moore's Law slowing and will likely plateau

Security attacks increasing in frequency and sophistication

Data-Centricity Will Drive the Architecture



Our Approach:

Clean Sheet, Fundamentals Based Design

Confront the Root Causes

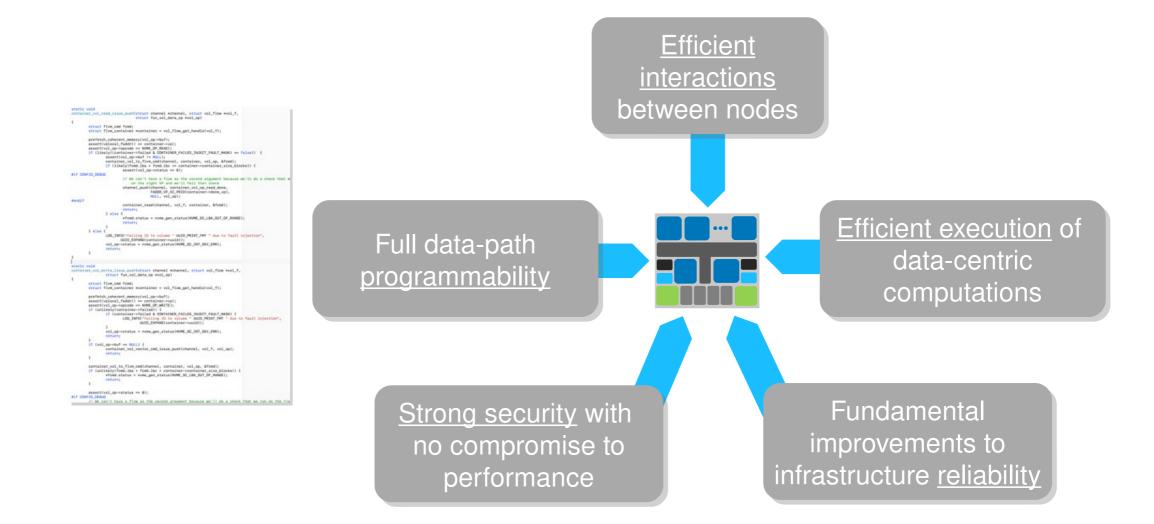
Inefficient data interchange <u>between</u> nodes

Inefficient execution of data-centric¹ computations <u>inside</u> nodes

Per-context state

¹ Data-Centric Computations:

- All work arrives as packets
- Require frequent context switching
- Involve modification of state
- I/O dominates arithmetic and logic


Unreliability

Inflexibility

FUNGIBLE

Insecurity

Fungible DPU[™] Addresses all Five Root Causes

Where does the Fungible DPU[™] sit?

X86 Compute Node

Fungible DPU[™] in each node

- Connects node to network
- Functions as intra-node hub

Programmable data and control planes

Handles data-centric computations End point of TrueFabric[™]

GPU ML/Analytics Node

DPU TrueFabric™

SSD Storage Node

Provides:

- \checkmark Full flexibility with high performance
- ✓ Strong end-to-end security
- \checkmark Pooling of resources
- ✓ Reliable low-jitter, low latency fabric
- \checkmark Observability and telemetry



HDD Storage Node

The Fungible F1 DPU™

Fungible F1 DPU[™] Architecture

8 Data Clusters

192 processor threadsFull cache coherencyTightly integrated accelerators

Control Cluster

•8 processor threads •Secure complex •HSM •Root-of-trust •Work scheduler

Memory & I/O Interfaces

•800 Gbps network unit

•4x16 G3/G4 PCIe unit

On Chip Network

High performanceLow latencyAny unit to any unit

Data Cluster

Runs the Data Plane 6 Cores * 4 Threads **Multi-Threaded Accelerators** •Data movement •Data lookup •Data security •Data reduction •Data protection •Data analytics

Core 1	Core 2	Core 3	Core 4	Core 5	Core 6		
Cluster Cache & Memory Manager							
DME	DLE	DSE	DRE	DPE	DAE		
On Chip Fabric							

Control Cluster

Runs the Control Plane on Linux

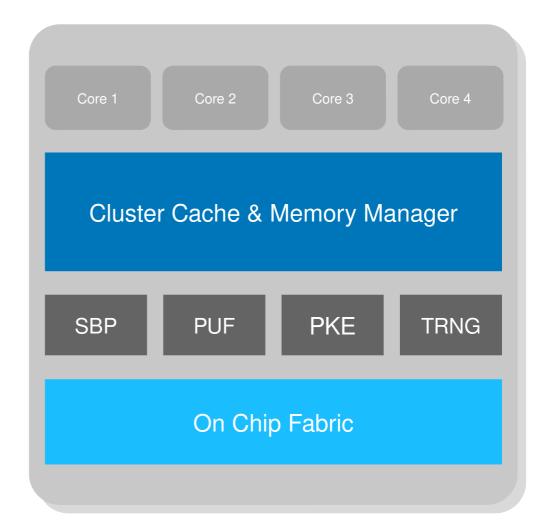
4 cores * 2 threads

Secure Enclave

•Secure Boot

•Secure Key Vault

•Binary Signing and Authentication


Public Key Crypto Engines

•RSA

•Elliptic Curve

True Random Number Generator

Physically Unclonable Function

CPUs, Caches, External Memory

CPUs

•MIPS-64, 9-stage, dual-issue, 4xSMT, FPU/SIMD unit

•IPC on data-centric workload close to CPU-max

•Full hardware virtualization

•Large I+D L1\$, shared L2\$, full system-wide coherency

High Bandwidth HBM2 Memory

•8GB, 4Tbits/sec

Integrated in the package

High Capacity DDR4 Memory

•2xDDR4 controllers, ECC enabled, up to 2666 MHz•Up to 512GB•Support of RDIMM, NVDIMM-N

• Fully general programmability

- All code in ANSI-C
- Fast thread switching
- Tight coupling with accelerators
- No performance compromises

High-Performance (800G) Flexible Network Engine

Implements TrueFabric[™] end point

Low latency Ethernet MAC with FEC

Integrated L2/L3/L4 forwarding

Low latency transit switching

Support of general virtualization protocols

Tight integration with data clusters

P4-like language controls

•Parsing, encapsulation, decapsulation

•Rx/Tx acceleration

Lookup acceleration

All packets are AES-GCM encrypted

Precision time protocol

• Low, deterministic latency

- Full cross-section bandwidth
- End-to-end congestion control
- End-to-end error control
- End-to-end encryption
- Network virtualization
- Granular QoS
- Enables disaggregation at scale

High-Performance (512G) Flexible Host Engine

Includes 16 independent dual-mode controllers

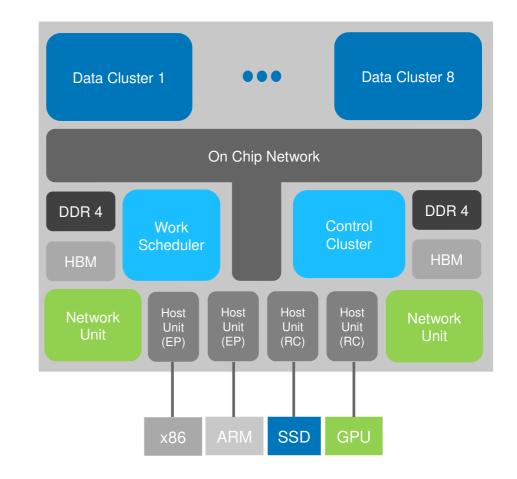
•EP/RC in any combination (4x16 to 16x4)

End point for X86 or ARM CPUs

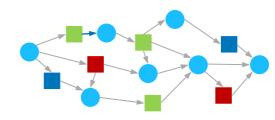
•Hardware virtualization

•SR-IOV with 64 PFs, 1024 VFs •Fine-grain QoS support

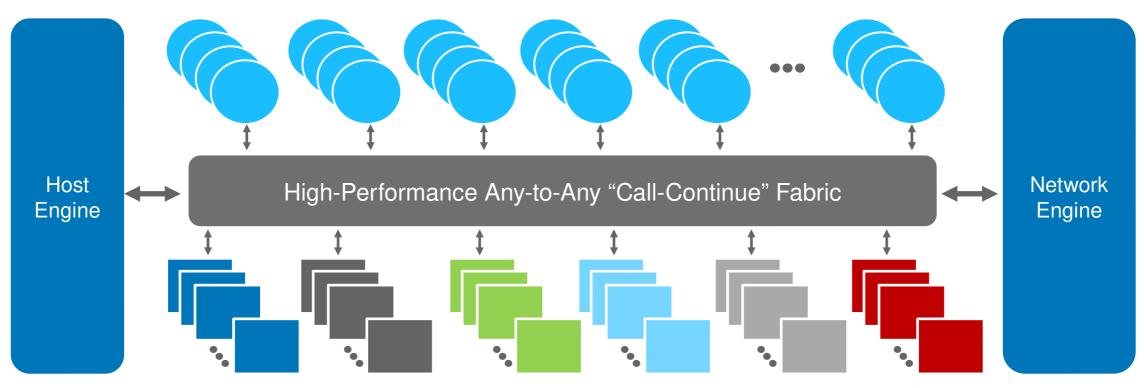
•Software flexibility


•Full network, storage, and security virtualization

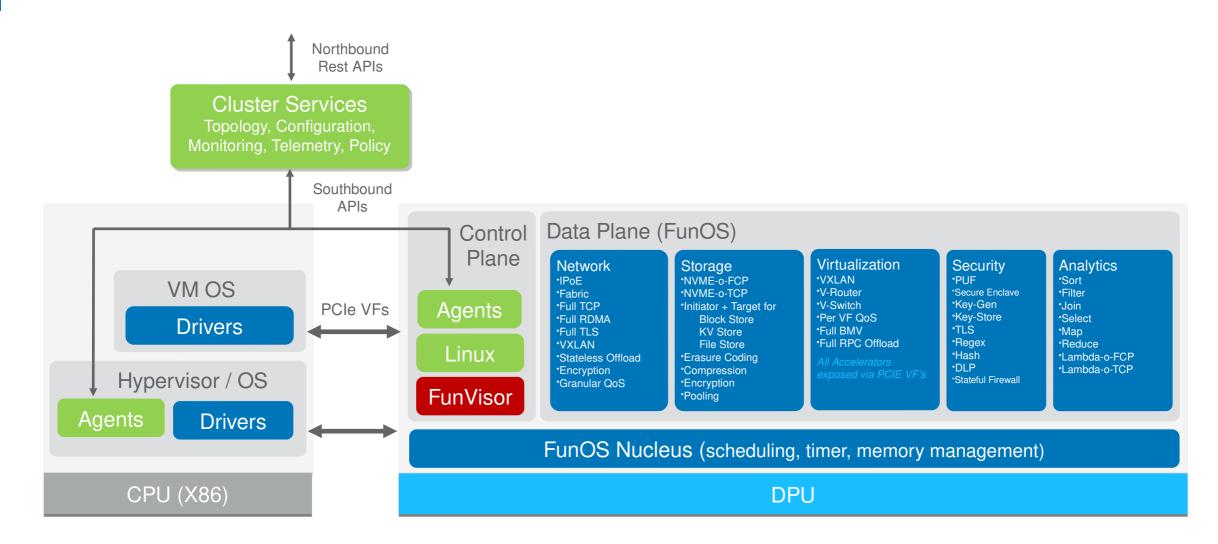
Root complex


•High performance abstraction layer

•Fully flexible data and control planes


•Connects to and abstracts SSDs, GPUs, FPGAs

Data Path Programming Model


MIPS-64 Hardware Threads Execute Run-To-Completion C-Code

Heterogeneous Accelerator Threads

Fungible DPU™ Software

Multiple Levels of Programmability

Software running on the DPU

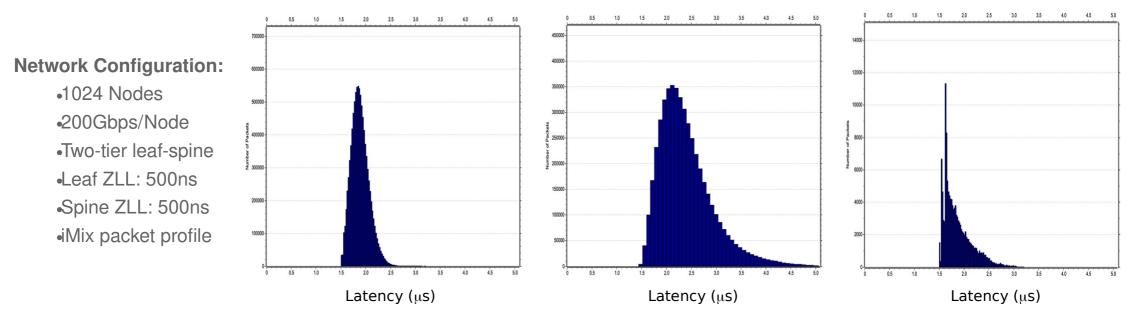
DPU control planeDPU data plane

Software running on a PCIe connected X86 Host

- •OS drivers and Agents
- •Data path code execution via eBPF

Cluster Services for management and control of multiple DPU systems

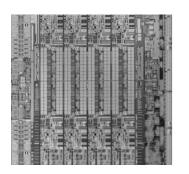
•Northbound APIs for orchestration systems


Infrastructure Services Performance

Service	Measured Performance	Estimated ¹ Performance	
TCP ² (Single Flow, Multi Flow)	50Gbps, 250Gbps	70Gbps, 400Gbps	
TLS ² Session Setup Rate	32,000/sec	100,000/sec	
IPSEC ² (Single Flow, Multi Flow)	-	10Gbps, 250Gbps	
Stateful Firewall ²	-	370Gbps	
OVS	-	400Gbps	
Load Balancer	256Gbps	300Gbps	
Block Store (4K IOPS)	8M	10M	
Video Streaming	256Gbps	300Gbps	
TPC-H Benchmark (relative to X86)	3X-100X	-	

¹ Full chip dedicated to service ² All measurements are full-duplex

TrueFabric™ Performance


Traffic Pattern	1024 * (Node to Node)	1024 Node to 1024 Node	1024 Nodes to 1 Node
Fabric Utilization	90.7%	93%	90%
Latency Mean	1.84µs	2.10µs	1.71µs
Latency Variance	0.13µs	0.32µs	0.12µs
Latency P99	2.14µs	3.30µs	1.75µs

A New Category of Microprocessor

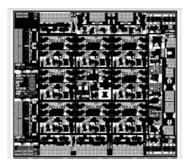
Purpose-built for the data-centric era

CPU

General-purpose

Multi-core, MIMD High IPC for single threads Fine-grain memory sharing Classical cache coherency Based on locality of reference Ideal for low to medium I/O

GPU



Vector floating point

Multi-core, SIMD

High throughput for vector processing Coarse-grain memory sharing Relaxed coherency Based on data >> instructions Ideal for graphics, ML training

Fungible DPU™

Data-centric

Multi-core, MIMD + tightly-coupled accelerators High throughput for multiplexed workloads TrueFabric[™] enables disaggregation and pooling Specialized memory system and on-chip fabric Ideal for network, storage, security, virtualization Data-centric computations run >10X more efficiently

Announcing the Fungible F1 and S1 DPUs

Common Architecture and Programming Model

- Storage target
- Al Server
- Security appliance
- Analytics

- Bare-metal virtualization
- Storage initiator, local instance storage
- NFV applications
- Node security

THANK YOU

