

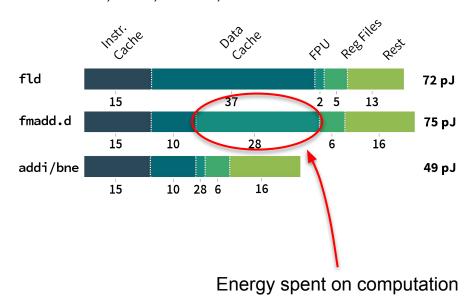
Manticore

A 4096-core RISC-V Chiplet Architecture for Ultra-efficient Floating-point Computing

Florian Zaruba^{*}, <u>zarubaf@iis.ee.ethz.ch</u> Fabian Schuiki^{*}, <u>fschuiki@iis.ee.ethz.ch</u> Luca Benini^{*†}, <u>lbenini@iis.ee.ethz.ch</u>

* Integrated Systems Laboratory, ETH Zurich

[†] University of Bologna



Introduction

- Ever growing demand for floating-point operations:
 - data-analytics, machine learning, scientific computing
- Tight energy-efficiency constraints
 - Node shrink: Increasing power density
 - Thermal design power limits the amount of active compute units
- Precision still counts (≥ fp32):
 - > Stencils, linear differential equations
- Domain-specific architectures are hard to adjust to algorithmic changes
- Most of the energy spent on control:
 - o Instruction cache, out-of-order execution
 - Von-Neumann bottleneck

Application-class processor (Ariane): 22nm FDX, 0.8V, 1 GHz, DGEMM

A Taste of Where Supercomputing is Heading

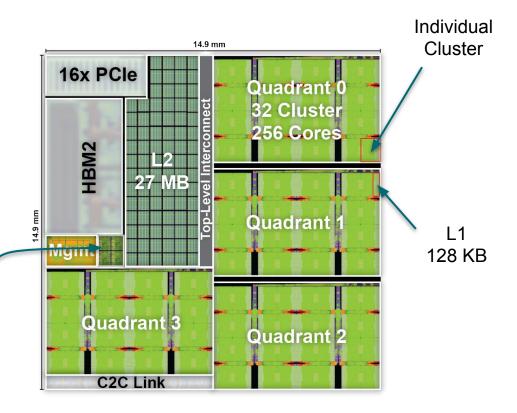
Fujitsu A64FX

- TSMC 7nm, CoWoS, ~8.7bn transistors
- Armv8-A SVE
- Many-core architecture
- Wide per-core SIMD data path (better FPU/Control power ratio)

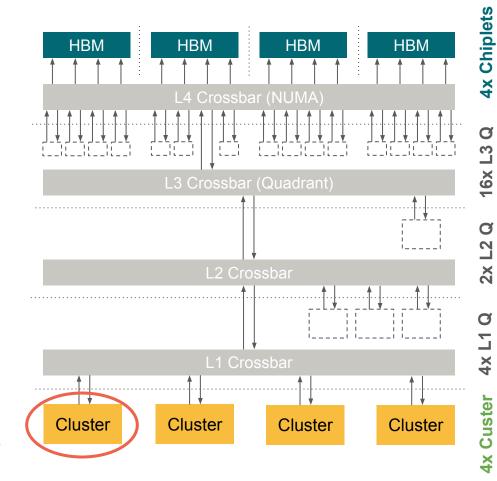
NVIDIA A100

- TSMC 7nm, CoWoS, ~54bn transistors
- AMPERE architecture
- SIMT data path
- Per-thread program counter; finer-grained threads
- Larger data-path (tensor cores)

Maximize computation data path with respect to control!


The Manticore Multi-Chiplet Concept

- Four chiplets:
 - o 222mm² (14.9 x 14.9mm)
 - Estimated in a 22nm process
 - Yield and cost improvements
- Three die-to-die links:
 - Each die has short-range, multi-channel, die-to-die links to each sibling
 - Efficient inter-die synchronization
 - D2D non-uniform memory access
- Private **8GB HBM2** per die
 - SoA BW and efficiency
- 16x PCIe Endpoint
 - Flexible host communication
 - Industry standard


Chiplet Architecture

- Methodology:
 - Quadrants/L2/Ariane placed and routed
 - o HBM2, PCIe estimated and scaled to tech
- Four quadrants of 32 clusters
 - 8 Snitch cores per cluster
 - o 16 DP and 32 SP flops per cycle
 - 1 GHz operating frequency
 - Peak > 4 Tdpflop/s per chiplet
- Four Ariane "manager" cores
 - Run Linux
 - Management and offloading
- 27 MB L2 Memory
 - Balance thermal budget
 - Utilize die area

64 TB/s

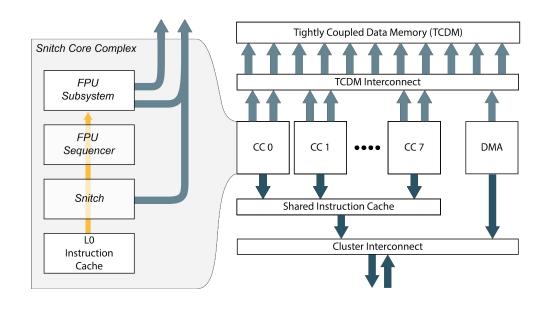
- System subdivided hierarchically into multi-level quadrants (as a tree)
 - High aggregate bandwidth of up to 64 TB/s among quadrants at lower levels
 - Thinned to sustainable HBM bandwidth of 1 TB/s at higher levels
- Low diameter and high BW
- 4x clusters share instruction cache and uplink to L1 quadrant
- 4x L1 quadrants share instruction cache and uplink to L2
- 2x L2 quadrants share uplink to L3
- 4x HBMs connected to 16x L3 quadrants

Compute Cluster

8x RV32G Snitch cores

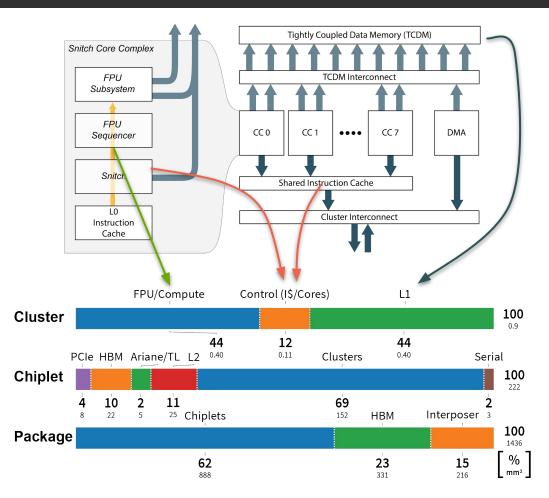
- Optional w/ 16 GPRs
- Single-stage
- Area-efficient: 9-22 kGE

8x Large FPU


- Decoupled and heavily pipelined
- Multi-format FPU (+SIMD)
 (half-precision, bfloat, custom fp8)
- Source of useful compute!

128 kB TCDM

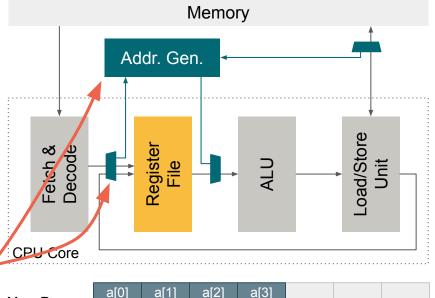
- Scratchpad for predictable memory accesses
- DMA w/ 512 bit data interface
 - > Efficient data movement


Custom ISA extensions

Xssr and Xfrep

Focus on Compute

- Goal:
 - Maximize compute/control ratio
- Small cores with large FPUs
 - SSRs/FREP allow for small cores with high compute utilization
- Multi-banked scratchpad memories (TCDM):
 - ➤ High sustainable, element-wise, BW
 - Similar to a register file in a VPU/GPU
 - Efficient access with SSRs
 - Fine-grained inter-cluster synchronization
- Async. data movement with DMA
 - Efficient bulk data transfer

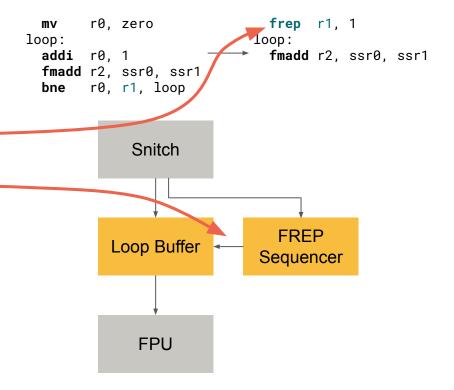

Taming the Beast

Stream Semantic Registers (Xssr)

- Turn register read/writes into implicit memory loads/stores
- Elides many explicit load/store instructions
 - Increases FPU/ALU utilization by ~3x
 - o Towards 100% in many cases

```
loop: scfg 0, %[a], ldA scfg 1, %[b], ldB loop: fmadd r2, r0, r1 fmadd r2, ssr0, ssr1
```

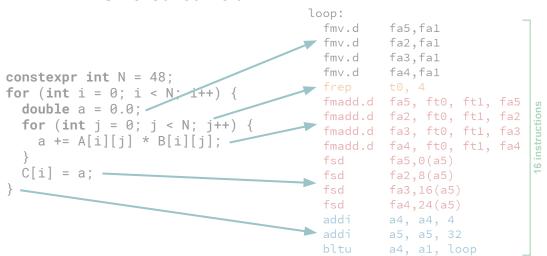
- Extension around the core's register file
 - Subset of registers have stream semantics
 - Accesses routed out of the core
- Address generation hardware
 - Assigns affine addresses to accesses
 - Up to 4 nesting levels
- SSRs ≠ memory operands
 - Perfect prefetching, highly latency-tolerant


Mem Reg:	a[0]	a[1]	a[2]	a[3]			
	b[0]	b[1]	b[2]	b[3]			
			a[0]	a[1]	a[2]	a[3]	
Mem Resp:			b[0]	b[1]	b[2]	b[3]	
				FMA [0]	FMA [1]	FMA [2]	FMA [3]
0				[U]	ניו	[4]	[2]

Floating-Point Repetition (Xfrep)

- Programmable micro-loop buffer
- Allows offloading of inner loop bodies
- Custom instruction indicates start of hardware loop block
- Sequencer steps through the buffer, issues instructions to the FPU
- Integer core operates in parallel:

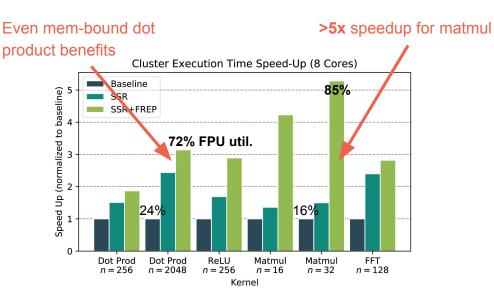
Pseudo-dual Issue

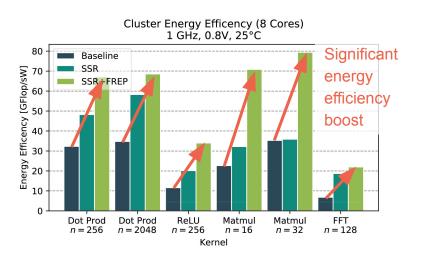

- RISC-V floating-point ISA makes this easy

FPU executes **204** ins

Typical SSR/FREP Execution

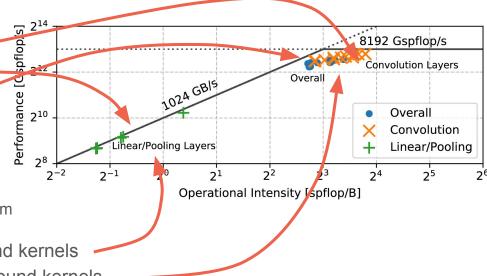
- SSRs enable float-only hardware loops
- FREP marks loop
- Example: Reduction Operation
 - E.g. matmul, stencils, convolution
 - Unrolled four-fold



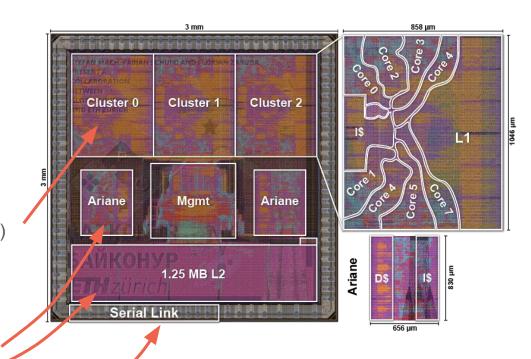

Core fetches/decodes **16** ins 4x fmv.d fmv.d frep 4x fmadd.d 192x fmadd.d 4x fsd addi addi bltu 4x fmv.d fsd frep 4x fmv.d 4x fmadd.d 192x fmadd.d 4x fsd addi addi bltu fsd . . . Bookkeeping ops in integer ALU **overlaps** with FPU operation

The Benefit of SSRs and FREP

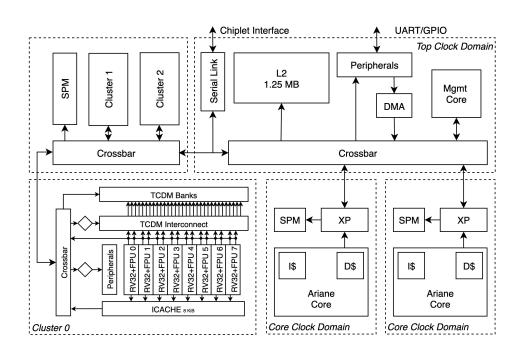
- A single-issue core can completely saturate an FPU
- IPC > 1, few inst. fetched, many executed
- Reduces the von Neumann bottleneck


- Integer and float pseudo-dual-issue
- Single-cluster energy efficiency of
 80 DP-Gflop/sW, >5x speedup
- SSR and FREP are also applicable to less regular problems, such as FFT or sorting

Performance Roofline


- Workloads from a DNN training step
 - Convolution-only (compute-bound)
 - Linear/pooling-only (memory-bound)
 - Full mix of kernels (conv.-dominated)
- Estimated based on:
 - Cycle-accurate hardware simulation
 - Architectural model of full system
 - Silicon measurements of prototype system
- >80% of peak bandwidth for memory-bound kernels
- >90% of peak performance for compute-bound kernels
- Close tracking of the roofline

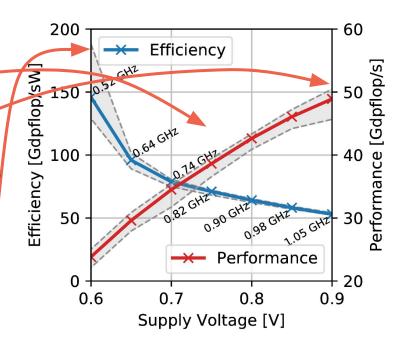
Silicon Prototype


Floorplan

- 9 mm² prototype of chiplet architecture
- Manufactured in 22nm
 - Globalfoundries 22FDX
 - Evaluates different standard cell flavors and threshold voltages
 - Forward Body Biasing
- Testbed for key architecture components
- Number-crunching Snitch cores (RV32G)
- Clusters laid out around memory system:
 - Cores arranged in star shape around
 Tightly Coupled L1 Data Memory
 - Instruction frontends close to L1 I-cache
- Application-class Ariane cores (RV64G)
- 1.25 MB of L2 memory
- Serial link tightly coupled to pad frame

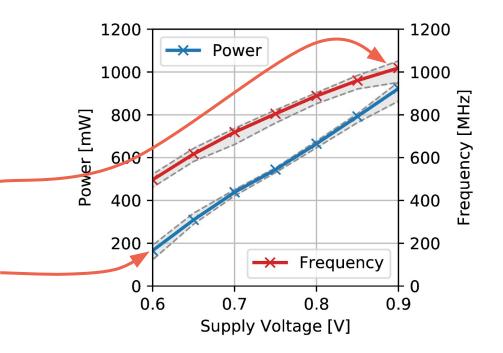
Architecture

- 3 Octa-Core Snitch Clusters (RV32G)
 - 8 kB L1 instruction cache
 - 128 kB L1 data memory (in 32 banks)
 - 8 Snitch cores
 - 8 multi-format FPUs
 - Good multi-core speed-ups
 - Suitable unit for "hardening" as a macro
- 2 Ariane Cores (RV64G)
 - 16/32 kB L1 instruction/data cache
 - 8 kB local scratchpad memory
 - Linux-capable, controller core
- 1 Snitch Management Core
- 800 MHz / 2.56 Gbit/s all-digital chip-to-chip link prototype
 - portable, "easy" to bring-up
- DMA Unit / Peripherals / 4 FLLs

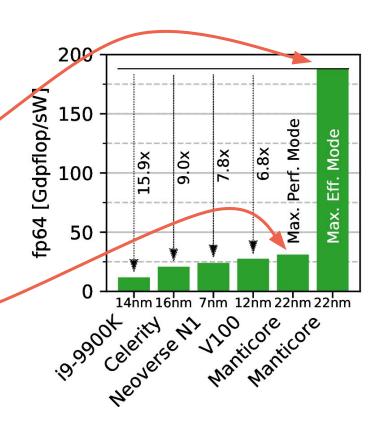


Silicon Performance

Silicon Performance / Efficiency


 >90% FPU utilization thanks to Snitch cores with Xfrep/Xssr

- Wide range of operating points
- Choice of performance/efficiency tradeoff
- On prototype up to 54 DP-Gflop/s across 24 cores
- On full Manticore system >27 DP-Tflop/s across
 4096 cores
- Both in **22nm** (**GF 22FDX**)
- Compute efficiency up to 188 DP-Gflop/sW
- Compute density up to **20 DP-Gflop/smm**²


Silicon Power / Speed

- Silicon supports wide power/frequency envelope
- DVFS based on operational intensity of current workload
- Adjust roofline to match:
- High-performance mode: >54 DP-Gflop/s
 - 0.9 V supply
 - >1 GHz sustained compute
- High-efficiency mode: >188 DP-Gflop/sW
 - 0.6 V supply
 - o **0.5 GHz** sustained compute

Efficiency on fp64

- Industry-leading fp64 efficiency
- Assuming 90% of peak performance sustainable for competing architectures
- In maximum-efficiency mode:
 - o **15x** more efficient than i9-9900K
 - 9x more efficient than Celerity (RISC-V)
 - 7x more efficient than N1
 - 6x more efficient than V100
 - 5x more efficient than A100¹
- In maximum-performance mode:
 - Competitive with N1 / V100 / A100¹

¹ Preliminary results for Ampere A100 based on whitepaper

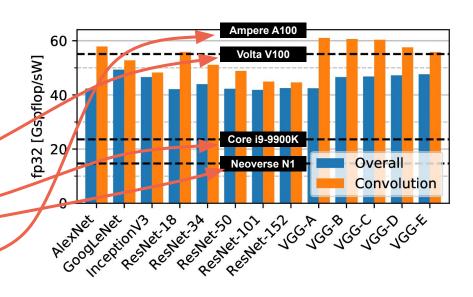
Efficiency on fp32

Competitive fp32 efficiency

 Assuming 90% of peak performance sustainable for competing architectures

Comparison on DNN Training workload

- Convolution-only (highly compute-bound)
- Full layer mix (intermittently memory-bound)
- Competitive with V100
- >2x better efficiency than i9-9900K
- >3x better efficiency than N1
- **25%** lower than A100¹ (22nm vs 7nm)


 Manticore:
 22nm FD-SOI @0.6V

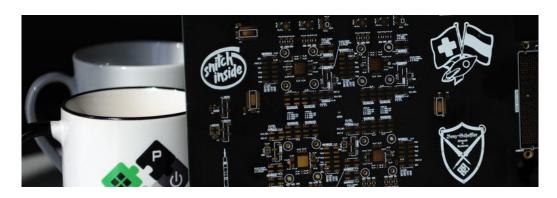
 Volta V100:
 12nm FinFET @1V

 Volta A100:
 7nm FinFET @1V

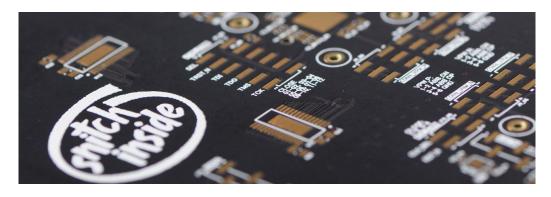
 Core i9-9900K:
 14nm FinFET @1V

 Neoverse N1:
 7nm FinFET @1V

¹ Preliminary results for Ampere A100 based on whitepaper


In Closing

- Small core, large FPU
- SSR/FREP combats von Neumann bottleneck
- Extreme efficiency on fp64
- Competitive on fp32


Next steps:

- "Quad-chiplet" prototype board
- Larger prototype silicon (FinFET)
- Looking for industrial partners for D2D/HBM/DDR PHY integration

 $@pulp_platform \ / \ github.com/pulp-platform \ / \ pulp-platform.org$

Physical Design

- Manufactured in Globalfoundries 22FDX
 - 10-metal ULP SLVT/LVT
- Components laid out as hard macros
- Allows us to mix:
 - Different poly-silicon pitches
 - Different routing grids
 - Different threshold voltages
- Evaluates different standard cell flavors and threshold voltages
 - o 7.5T vs. 8T
- Forward Body Biasing
 - > Speed improvements
- Evaluated on industry-grade silicon testing equipment at ETH Zurich

