Software Co-design for the
First Wafer-Scale Processor (and Beyond)

Cerebras Systems



Cerebras Wafer
Scale Engine (WSE)

The Most Powerful Processor for Al

400,000 Al-optimized cores
46,225 mm? silicon

1.2 trillion transistors

18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process
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Architecture Designed for Deep Learning

Each component optimized for Al compute

Compute
Fully-programmable core, ML-optimized extensions
Dataflow architecture for sparse, dynamic workloads

Memory
Distributed, high performance, on-chip memory

Communication
High bandwidth, low latency fabric
Cluster-scale networking on chip
Fully-configurable to user-specified topology

Together, orders of magnitude performance and
efficiency gain

Linear cluster-scale performance on a single chip

Fabric Switch

Fabric Interface
Data . Control

t
|

SRAM
Memory

Registers

PR—"

FMAC
Datapath

Tensor Control
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Programming the Wafer-Scale Engine

lll

ﬁg :wawvv
ﬂﬁlir#:r
] | B

Execution
Plan

.
>®
>®
>®
>0
ad

=50
0

Link Executable

Users program the WSE using standard ML frameworks, e.g. TensorFlow, PyTorch

Cerebras Graph Compiler automatically compiles the DNN graph
e Extracts from Framework, converts to Cerebras IR, performs matching to Cerebras kernels

* Place & Route allocates compute and memory, configures on-chip network

Enables straightforward programming, flexible execution, high performance

Cerebras



Matching to Kernel Library

Graph matching from FW ops to Kernels:
e Primitives to be sized and placed by rest of CGC

* Expressed as nested for-loops for generality

2 Kernel Types:
1. Auto-generated
* General and supports various operations
* Polyhedral techniques
* Unrolling loop dimensions across fabric
2. Hand-optimized
* High-performance common kernels

* Hand-tuned ucode and fabric programming

@erebras

MATMUL Op

for i= 0...783:
for j= 0...255:
out@[j] += lhs[i]*rhs[i][7]

-

MATMUL Kernel




Choosing the Optimal Mapping Strategy

i Neural Network Kernels
* Choose mapping strategy for each kernel

 Model parallel —size and allocation of each kernel
» Data parallel — replication factor

( ) ( N\ 4 ) ' N

» Strategy determines
 Allocation of compute cores to kernel
 Amount of memory to kernel —
e Optimal communication pattern

A\ 4
A 4
A\ 4
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Automatically Exploring the Optimization Search Space

0% Allocation 100% 0% Allocation 100%
() Compute: | I T [ ) Compute: |[ | | [ ]
MM Memory: | [ 1 1) Memory: | | | [ )
Fabric: | [ [ [} Fabric: | [ | )
Network Perf: | FEE Network Perf: | B
Neural Network Kernels One possible allocation of the compute, A different allocation of compute,
memory, and fabric to each kernel memory, and fabric to each kernel
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Automatically Exploring the Optimization Search Space
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Co-Designed for Training Flexibility and Performance

Compiler stack and hardware architecture co-designed

Result: Flexibility and Performance
1. Model parallel and data parallel execution
2. Sparsity harvesting and inducing

3. Dynamic neural network execution

@erebras



1) Flexible Parallelism

* Optimization search enables spectrum of parallel execution strategies on WSE
* Single algorithm uses both model and data parallelism in optimization
* Execution strategies optimized for different network characteristics

Data Parallel Model Parallel 4 WSE Layer-Pipelined
| ® @
Device 1 Device 2 Device 1 Device 2 ©
(O
Model Model Q- :
\ \ — Layer-sequential
Sample 1 Sample N (3]
‘ e E WSE GPU
. . . . = L AR 4 ¢
Running multiple Running multiple parts
samples at same time of network at same time Data Parallel >

@e rebras (Batch Size)



Using Model Parallelism

* Run all Iayers on fabric sections 4-Layer BERT Performance, Fixed Batch Size = 16
* Layers in parallel = more performance

* Execute network as pipeline
* Enabled by high bandwidth interconnect

B
o

w
U

w
o

* Small batch size
* No need to replicate network

g
o

Relative Perf (x factor)
N
U

=
oy

* No weight sync overhead
* Weights updated in place
ok 100k 200k 300k 400k

Cores

-
o

Result: linear performance scaling with
small batch size

@erebras



Using Data Parallelism

* Run layer replicas on fabric sections
* Replicas in parallel = more performance
* Applies to smaller layers/networks

* Not forced to large batch size

e Small batch size per replica

* Single sample execution enabled by
memory performance at low batch

* Larger batch by running multi-samples

BERT Attention Kernel Performance

Relative Perf (x factor)

R, N Wb~ U1 OO N

* Low weight sync overhead 100K 500k 300k 400K

* Enabled by low latency and high Cores
bandwidth interconnect

o
~

Data parallel replicas: —e—1 2 4 8

Result: linear performance scaling with
medium batch size

@erebras



2) Translating Sparsity into Training Performance

Large number of zeros in neural network

* Nonlinears create activation sparsity Non-linear
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Kernels designed for sparsity
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* Harvest natural sparsity in neural network
Dense Network

* Induce sparsity when not naturally occurring
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Data a Ctrl

Core Designed for Sparsity

Fabric Input

Enabled by dataflow scheduling in hardware
>

Instructions

Tensor [ Tmaclz]=[z],[w],a

Control _,

* Fabric data triggers instruction lookup

» State machine schedules datapath cycles

Data
Intrinsic sparsity harvesting v 1
* Sender filters out sparse zero data FMAC
_ _ . Datapath [z]
* Receiver skips unnecessary processing [w]

Fine-grained execution datapaths Registers

* Small cores with independent instructions

 High utilization for dynamic non-uniform work Fabric Output

@erebras



Natural Sparsity in Transformer

e Transformer uses ReLU and Dropout
non-linears

* RelU is 90% naturally sparse
* Dropout is 30% naturally sparse

* 1.2x perf gain vs. dense non-linear
and no dropout

@erebras
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Natural Sparsity in Transformer

e Transformer uses ReLU and Dropout
non-linears

* RelU is 90% naturally sparse
* Dropout is 30% naturally sparse

* 1.2x perf gain vs. dense non-linear
and no dropout

@erebras
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Inducing Sparsity

* Sparsity can be induced by 34-Layer FC Performance vs. Induced Sparsity
* Adding sparse non-linear (e.g. ReLU) _3
* Dropping relatively small values %
* Inducing sparsity on 34-Layer dense :%2
FC model % .
e 1.7x perf gain with RelLU § II I I I
o
* 2.4x perf gain Wlth ReLU+50% SparSity ’ Dense, Dense, ReLU 25% sparse, 50% sparse,
Identity RelLU RelLU
mGPU mCS-1
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Inducing Sparsity in BERT

 BERT has no natural sparsity BERT Performance vs. Induced Sparsity

[ J
N

But sparsity can be induced on most

layers in both fwd and bwd pass 518
* Up to 1.5x perf gain with 50% sparsity | z1s
and minimal accuracy loss & 4
* ML user has control £

[EEN

0% 25% 50% 75%
Induced Sparsity
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3) Designed to Unlock Smarter Techniques and Scale

WSE has a data flow architecture

* Flexibility to stream token by token
* Inherent sparsity harvesting

WSE is a MIMD architecture

* Can program each core independently
* Perform different operations on different data

@erebras



Flexibility Enables Dynamic ML Methods

Fine-grained dynamic execution
enables new ML techniques

1.

@erebras

Variable sequence length
e Stop at end of sequence, no padding

Irregular/NAS models

* High utilization for non-square matrices

Recursive dynamic depth
 Run enough layers to meet objective

Dynamic (and long) sequence length
* Process only relevant part of sequence

Depth

Universal Transformer with Dynamic Depth

Parameters are tied across positions and time steps

T times

[ Transition Function | [ Transition Function |
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CS-1 HW/SW Co-design Enables Next Gen DL models

The community wants smarter and larger models

 (S-1isthe most powerful single node
 Automatic scaling through model and data parallelism
* Accessible cluster-scale performance on a single chip

* (CS-1is flexible and dynamic
* Fine-grained sparsity harvesting and induction
* Novel adaptive & dynamic novel ML techniques

This combination of flexibility and performance enables the next generation of models
and techniques otherwise challenged today.
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Wafer Scale Engine — Generation 2

850,000 Al-optimized cores
2.6 Trillion Transistors

TSMC 7nm Process



