Software Co-design for the
First Wafer-Scale Processor (and Beyond)

Cerebras Systems

Cerebras Wafer
Scale Engine (WSE)

The Most Powerful Processor for Al

400,000 Al-optimized cores
46,225 mm? silicon

1.2 trillion transistors

18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process

>

©
- 00 b c
e .m m s} -m
%) S wd

e - («D)]
2 .o © g o
%) 35 2 Z 2
9 cg B = v
o Y Me ..m 2 O
F W w5 £ O =
I - nr” a ze) <
— A ‘0 Q —

) r + -_
L fL 5w 2
(Vs o O n Q.
> C ~° & £ S

—_— 20 © =
@) = c = g oA ©
Q O @® - ma c
- O W n o= e..m 3
i C L 9o I >t o
m) O = © © Q

@ C > v
e s wn " —= N o
n = = o 2.2 +
aO > .|W; e’ cC ¥

C T 2 E3 £ 3573 m
VA o O0 292 o
bt ¢ B3 2 549 =
o2 § €5 & 25 3
O 0O a o a =& o)

N
AASAAIETSY NSNSESIS AN

A
A AV AYAY AVAY AT LAY AV AV A v N N AT A VAT A A AV AY AV AT AT A ATATRAYAV AT NV O R
AVAYAY AN AVAY AV AN AVAN AV N,

Architecture Designed for Deep Learning

Each component optimized for Al compute

Compute
Fully-programmable core, ML-optimized extensions
Dataflow architecture for sparse, dynamic workloads

Memory
Distributed, high performance, on-chip memory

Communication
High bandwidth, low latency fabric
Cluster-scale networking on chip
Fully-configurable to user-specified topology

Together, orders of magnitude performance and
efficiency gain

Linear cluster-scale performance on a single chip

Fabric Switch

Fabric Interface
Data . Control

t
|

SRAM
Memory

Registers

PR—"

FMAC
Datapath

Tensor Control

47472 8%4% % "4
\.onéuthuhs\\;uu\c\n.
‘stvt‘.‘ “.

!\Ot-
&Q‘.‘
LXAA XA AL

a2 avia%a

S

Q
©
o
N
S

o0
S S -
O C =
OE L E

(oYo) S .
.Woe 3 29
v 2 =
- D m &
L =
ST Eus

Q

& 58
=9 228
U y— — ge) <

@erebras

Programming the Wafer-Scale Engine

lll

ﬁg :wawvv
ﬂﬁlir#:r
] | B

Execution
Plan

.
>®
>®
>®
>0
ad

=50
0

Link Executable

Users program the WSE using standard ML frameworks, e.g. TensorFlow, PyTorch

Cerebras Graph Compiler automatically compiles the DNN graph
e Extracts from Framework, converts to Cerebras IR, performs matching to Cerebras kernels

* Place & Route allocates compute and memory, configures on-chip network

Enables straightforward programming, flexible execution, high performance

Cerebras

Matching to Kernel Library

Graph matching from FW ops to Kernels:
e Primitives to be sized and placed by rest of CGC

* Expressed as nested for-loops for generality

2 Kernel Types:
1. Auto-generated
* General and supports various operations
* Polyhedral techniques
* Unrolling loop dimensions across fabric
2. Hand-optimized
* High-performance common kernels

* Hand-tuned ucode and fabric programming

@erebras

MATMUL Op

for i= 0...783:
for j= 0...255:
out@[j] += lhs[i]*rhs[i][7]

-

MATMUL Kernel

Choosing the Optimal Mapping Strategy

i Neural Network Kernels
* Choose mapping strategy for each kernel

 Model parallel —size and allocation of each kernel
» Data parallel — replication factor

() (N\ 4) ' N

» Strategy determines
 Allocation of compute cores to kernel
 Amount of memory to kernel —
e Optimal communication pattern

A\ 4
A 4
A\ 4

@erebras

Automatically Exploring the Optimization Search Space

0% Allocation 100% 0% Allocation 100%
() Compute: | I T [) Compute: |[| | []
MM Memory: | [1 1) Memory: | | | [)
Fabric: | [[[} Fabric: | [|)
Network Perf: | FEE Network Perf: | B
Neural Network Kernels One possible allocation of the compute, A different allocation of compute,
memory, and fabric to each kernel memory, and fabric to each kernel

@erebras

Automatically Exploring the Optimization Search Space

= - - i1 3z P
= b “ " . = = - * = i - ~
T O P P P O O I P
B i it ii=il SpEd izl et Ha F i Era E i e e F H e
; §§ F éﬁ érﬁ i ég_ %E ég ; éé é§ %E f %E ' ég §§\ : :
i] ﬁ & J g &4 4 & 3] &z) o) s = bl B "‘2 5
.......... - /..5&3‘” i
___ = | ¥
___ W
__ Fme tune 4 Area Vs Per formance tra de- o ff per kernel | 1
Option 3x3: Optlon 3x6: Option 6x6 Optlon 6x12 Option 12x12
4X slower 2X slower 36 cores 2X faster 4X faster
Vs area % area 2X area 4X area

LLL L L L Ll

@erebras |llllllllllll1:

R0, mme)=
o

b

0001=4 $107=2 [£ L]=my
A1

L [l gIT =)
Poigp

I

L=m [=1] gHIT=]
FooHp

A maureu [0 |=u
1o

Fl=o p1=4 =1 #H0C=1
P01

on the CS-1

Mapping
Compute
Kernels

Fl=m =1 £701=]
Foomp

®.
@~
:

Fl=M p1=U $Z01=)
$o0gp

k

FI=% =Y ¥T01=]
FomMp

K

PI=M p1=4 $Z01=)
$o0KP

Pl=m p1=U $T01=) 2 > 0 5
Fo0pgp mj. ®. o dlll

8Z=A §7=4 Z=1 $201=)
$0|q2

8T=% $7=4 T15=)
$o0HP

BI=M §T=4 T15=)
Foomp

BT=m 8T=4 Tis=)
Fomp

QE=m 9=l T=1 T15=)
Hagqa

Tt i i

QE=m OC=1 QcT=J
10Mp

’

G5=h gEul G5T=)
$oopp

k

G5=M gE=4 [=1957=)
A0)q2

p

-
=
-
g
i
i
,
=i
|
|
i
..J iz
i
:
3
m
5
g
N-hu

FITEM FITE =)
oK

Output

X=awen [¢ $77 wizl=u
i

Continuously Streaming Input
Continuously Streaming

@Eerebras

Co-Designed for Training Flexibility and Performance

Compiler stack and hardware architecture co-designed

Result: Flexibility and Performance
1. Model parallel and data parallel execution
2. Sparsity harvesting and inducing

3. Dynamic neural network execution

@erebras

1) Flexible Parallelism

* Optimization search enables spectrum of parallel execution strategies on WSE
* Single algorithm uses both model and data parallelism in optimization
* Execution strategies optimized for different network characteristics

Data Parallel Model Parallel 4 WSE Layer-Pipelined
| ® @
Device 1 Device 2 Device 1 Device 2 ©
(O
Model Model Q- :
\ \ — Layer-sequential
Sample 1 Sample N (3]
‘ e E WSE GPU
. . . . = L AR 4 ¢
Running multiple Running multiple parts
samples at same time of network at same time Data Parallel >

@e rebras (Batch Size)

Using Model Parallelism

* Run all Iayers on fabric sections 4-Layer BERT Performance, Fixed Batch Size = 16
* Layers in parallel = more performance

* Execute network as pipeline
* Enabled by high bandwidth interconnect

B
o

w
U

w
o

* Small batch size
* No need to replicate network

g
o

Relative Perf (x factor)
N
U

=
oy

* No weight sync overhead
* Weights updated in place
ok 100k 200k 300k 400k

Cores

-
o

Result: linear performance scaling with
small batch size

@erebras

Using Data Parallelism

* Run layer replicas on fabric sections
* Replicas in parallel = more performance
* Applies to smaller layers/networks

* Not forced to large batch size

e Small batch size per replica

* Single sample execution enabled by
memory performance at low batch

* Larger batch by running multi-samples

BERT Attention Kernel Performance

Relative Perf (x factor)

R, N Wb~ U1 OO N

* Low weight sync overhead 100K 500k 300k 400K

* Enabled by low latency and high Cores
bandwidth interconnect

o
~

Data parallel replicas: —e—1 2 4 8

Result: linear performance scaling with
medium batch size

@erebras

2) Translating Sparsity into Training Performance

Large number of zeros in neural network

* Nonlinears create activation sparsity Non-linear

Wk
i
XD
77

?
L2
rf"&i

* Mul-Add by zero does not change the result 2K

fi&
W
Y

X
"
3
Y
I

\

r% .
DY
X

W
4§

Kernels designed for sparsity

i
i

)

* Harvest natural sparsity in neural network
Dense Network

* Induce sparsity when not naturally occurring

@erebras

Data a Ctrl

Core Designed for Sparsity

Fabric Input

Enabled by dataflow scheduling in hardware
>

Instructions

Tensor [Tmaclz]=[z],[w],a

Control _,

* Fabric data triggers instruction lookup

» State machine schedules datapath cycles

Data
Intrinsic sparsity harvesting v 1
* Sender filters out sparse zero data FMAC
_ _ . Datapath [z]
* Receiver skips unnecessary processing [w]

Fine-grained execution datapaths Registers

* Small cores with independent instructions

 High utilization for dynamic non-uniform work Fabric Output

@erebras

Natural Sparsity in Transformer

e Transformer uses ReLU and Dropout
non-linears

* RelU is 90% naturally sparse
* Dropout is 30% naturally sparse

* 1.2x perf gain vs. dense non-linear
and no dropout

@erebras

Output

(

|
Add & Norm
Forward

\

Probabilities
)
| Softmax |
| Linear)
g N

Add & Norm
Forward

[Add & Norm e~

Multi-Head

Attention
2) N>
—
| Add & Norm]<\
~—>| Add & Norm ! Vosked
Multi-Head Multi-Head
Attention Attention
A+ A Iy,
— J _ —
Positional Positional
. + & .
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Natural Sparsity in Transformer

e Transformer uses ReLU and Dropout
non-linears

* RelU is 90% naturally sparse
* Dropout is 30% naturally sparse

* 1.2x perf gain vs. dense non-linear
and no dropout

@erebras

Feed-Forward

ﬂ‘_/

Dropout Sparse
FC2 J
RelU <j_L,: Sparse
FC1 J
J

Inducing Sparsity

* Sparsity can be induced by 34-Layer FC Performance vs. Induced Sparsity
* Adding sparse non-linear (e.g. ReLU) _3
* Dropping relatively small values %
* Inducing sparsity on 34-Layer dense :%2
FC model % .
e 1.7x perf gain with RelLU § II I I I
o
* 2.4x perf gain Wlth ReLU+50% SparSity ’ Dense, Dense, ReLU 25% sparse, 50% sparse,
Identity RelLU RelLU
mGPU mCS-1

@erebras

Inducing Sparsity in BERT

 BERT has no natural sparsity BERT Performance vs. Induced Sparsity

[J
N

But sparsity can be induced on most

layers in both fwd and bwd pass 518
* Up to 1.5x perf gain with 50% sparsity | z1s
and minimal accuracy loss & 4
* ML user has control £

[EEN

0% 25% 50% 75%
Induced Sparsity

@erebras

3) Designed to Unlock Smarter Techniques and Scale

WSE has a data flow architecture

* Flexibility to stream token by token
* Inherent sparsity harvesting

WSE is a MIMD architecture

* Can program each core independently
* Perform different operations on different data

@erebras

Flexibility Enables Dynamic ML Methods

Fine-grained dynamic execution
enables new ML techniques

1.

@erebras

Variable sequence length
e Stop at end of sequence, no padding

Irregular/NAS models

* High utilization for non-square matrices

Recursive dynamic depth
 Run enough layers to meet objective

Dynamic (and long) sequence length
* Process only relevant part of sequence

Depth

Universal Transformer with Dynamic Depth

Parameters are tied across positions and time steps

T times

[Transition Function | [Transition Function |
;)
Self-Attention Self-Attention
' i ' 3
-\—_________\-_ =
N
el h, | h,

)

Paositions

e

—

"

—

-:_/-r'“" A

[Transition Function |

4

[Self-Attention

)

\

CS-1 HW/SW Co-design Enables Next Gen DL models

The community wants smarter and larger models

 (S-1isthe most powerful single node
 Automatic scaling through model and data parallelism
* Accessible cluster-scale performance on a single chip

* (CS-1is flexible and dynamic
* Fine-grained sparsity harvesting and induction
* Novel adaptive & dynamic novel ML techniques

This combination of flexibility and performance enables the next generation of models
and techniques otherwise challenged today.

@erebras

Wafer Scale Engine — Generation 2

850,000 Al-optimized cores
2.6 Trillion Transistors

TSMC 7nm Process

