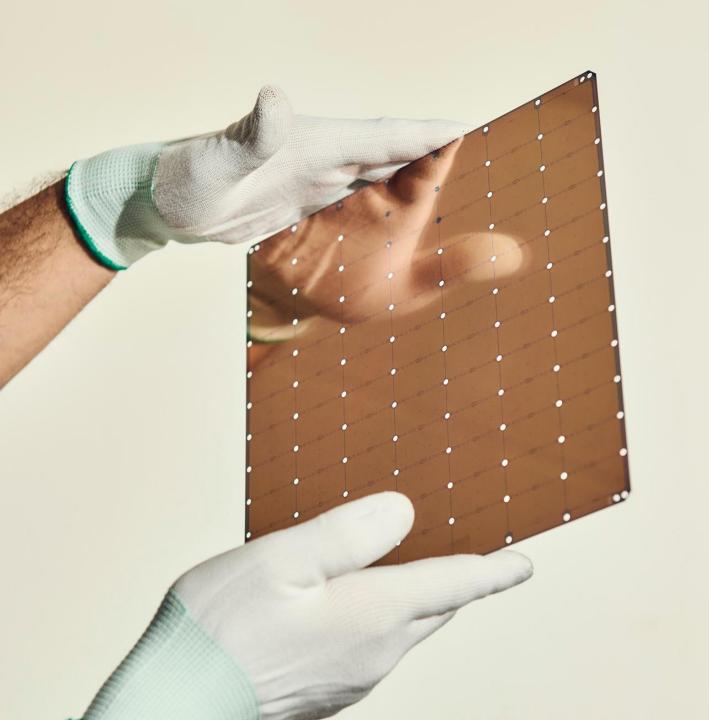
Software Co-design for the First Wafer-Scale Processor (and Beyond)

Cerebras Systems



Cerebras Wafer Scale Engine (WSE)

The Most Powerful Processor for AI

400,000 Al-optimized cores
46,225 mm² silicon
1.2 trillion transistors
18 Gigabytes of On-chip Memory
9 PByte/s memory bandwidth
100 Pbit/s fabric bandwidth
TSMC 16nm process

Cerebras CS-1: Cluster-Scale DL Performance in a Single System

Powered by the WSE

Programming accessibility of a single node, using TensorFlow, PyTorch, and other frameworks

Deploys into standard datacenter infrastructure

Multiple units delivered, installed, and in-use today across multiple verticals

Built from the ground up for AI acceleration

Architecture Designed for Deep Learning

Each component optimized for AI compute

Compute

- Fully-programmable core, ML-optimized extensions
- Dataflow architecture for sparse, dynamic workloads

Memory

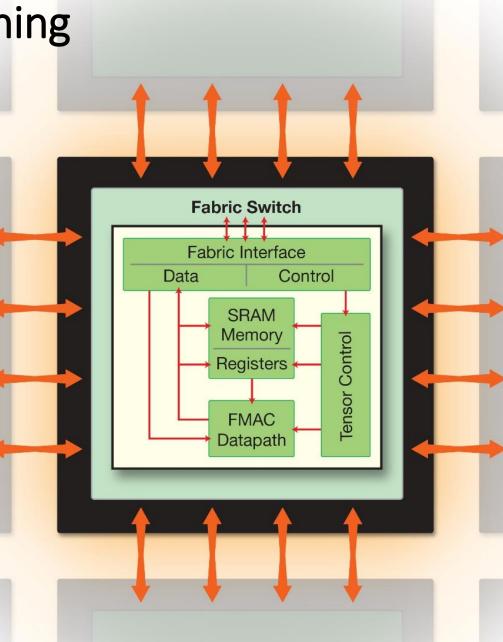
• Distributed, high performance, on-chip memory

Communication

- High bandwidth, low latency fabric
- Cluster-scale networking on chip
- Fully-configurable to user-specified topology

Together, orders of magnitude performance and efficiency gain

Linear cluster-scale performance on a single chip

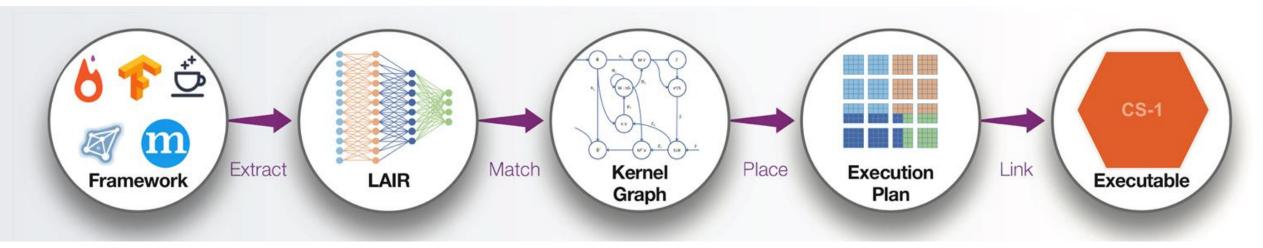


SW Co-designed for Scale from the Beginning

This time, we'll cover how the codesigned software leverages the power and flexibility of the WSE for deep learning acceleration.

And what's next.

Programming the Wafer-Scale Engine



Users program the WSE using standard ML frameworks, e.g. TensorFlow, PyTorch

Cerebras Graph Compiler automatically compiles the DNN graph

- Extracts from Framework, converts to Cerebras IR, performs matching to Cerebras kernels
- Place & Route allocates compute and memory, configures on-chip network

Enables straightforward programming, flexible execution, high performance erebras

Matching to Kernel Library

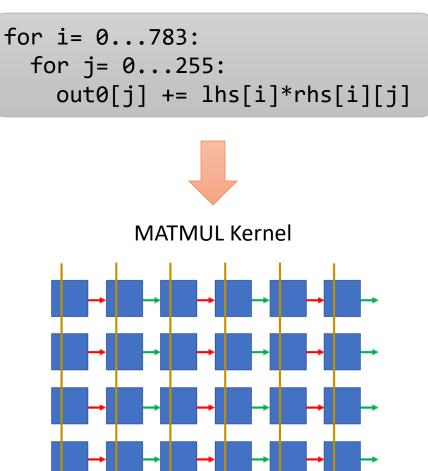
Graph matching from FW ops to Kernels:

- Primitives to be sized and placed by rest of CGC
- Expressed as nested for-loops for generality

2 Kernel Types:

- 1. Auto-generated
 - General and supports various operations
 - Polyhedral techniques
 - Unrolling loop dimensions across fabric
- 2. Hand-optimized
 - High-performance common kernels
 - Hand-tuned ucode and fabric programming

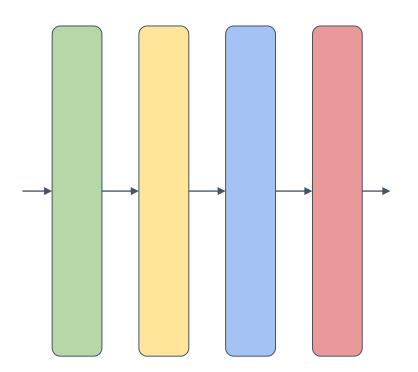
MATMUL Op



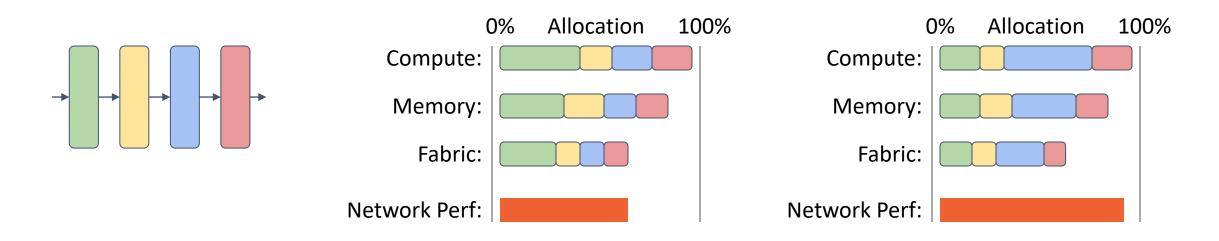
Choosing the Optimal Mapping Strategy

- Choose mapping strategy for each kernel
 - Model parallel size and allocation of each kernel
 - Data parallel replication factor
- Strategy determines
 - Allocation of compute cores to kernel
 - Amount of memory to kernel
 - Optimal communication pattern

Neural Network Kernels



Automatically Exploring the Optimization Search Space

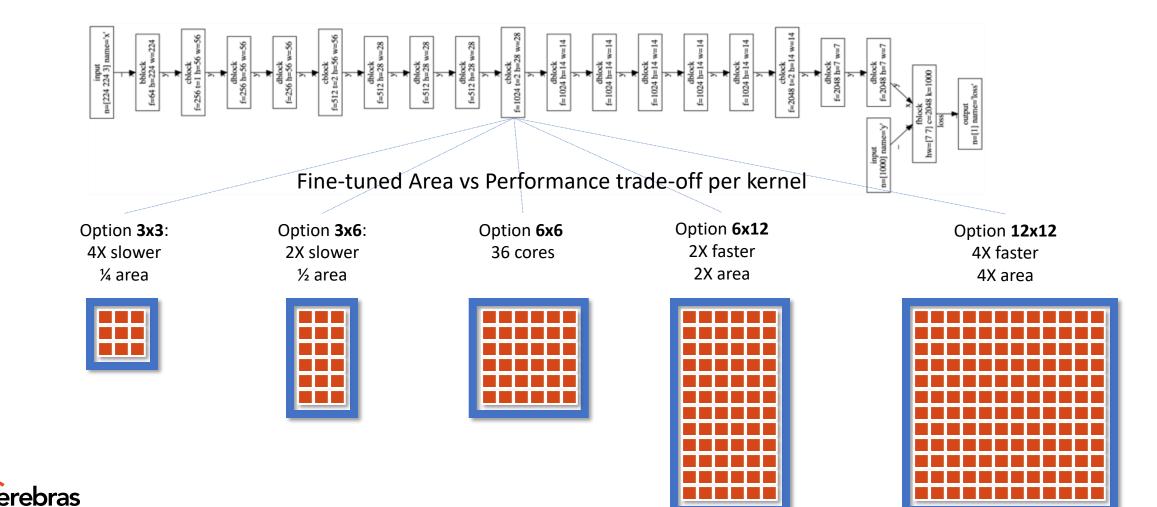


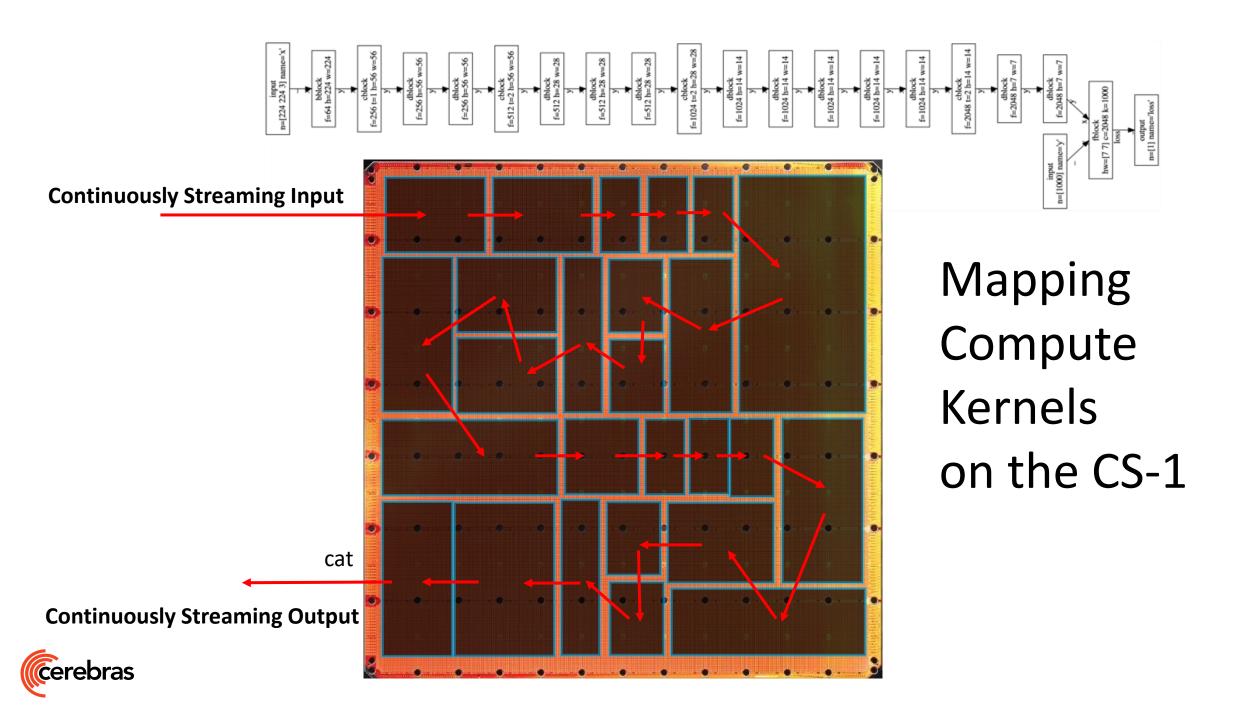
Neural Network Kernels

One possible allocation of the compute, memory, and fabric to each kernel

A different allocation of compute, memory, and fabric to each kernel

Automatically Exploring the Optimization Search Space





Co-Designed for Training Flexibility and Performance

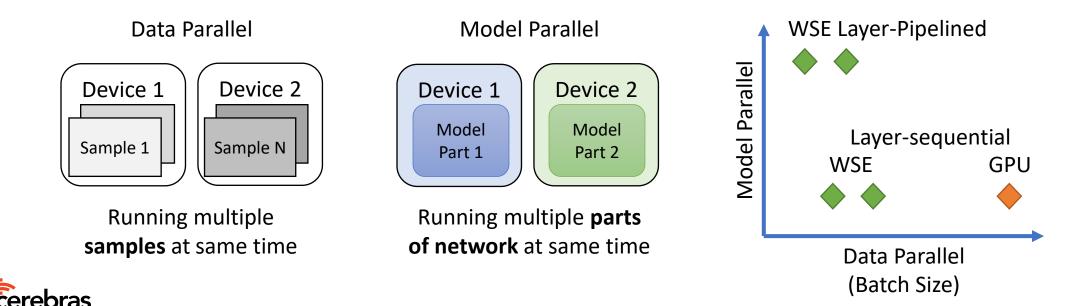
Compiler stack and hardware architecture co-designed

Result: Flexibility and Performance

- 1. Model parallel and data parallel execution
- 2. Sparsity harvesting and inducing
- 3. Dynamic neural network execution

1) Flexible Parallelism

- Optimization search enables **spectrum** of parallel execution strategies on WSE
- Single algorithm uses both model and data parallelism in optimization
- Execution strategies **optimized** for **different network characteristics**



Using Model Parallelism

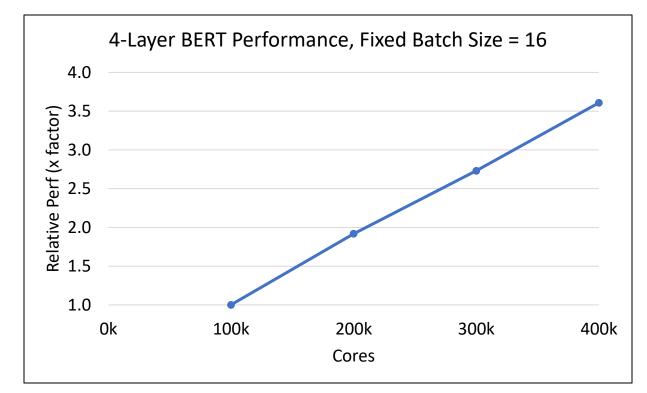
• Run all layers on fabric sections

- Layers in parallel = more performance
- Execute network as pipeline
- Enabled by high bandwidth interconnect

Small batch size

- No need to replicate network
- No weight sync overhead
 - Weights updated in place

Result: linear performance scaling with *small* batch size



Using Data Parallelism

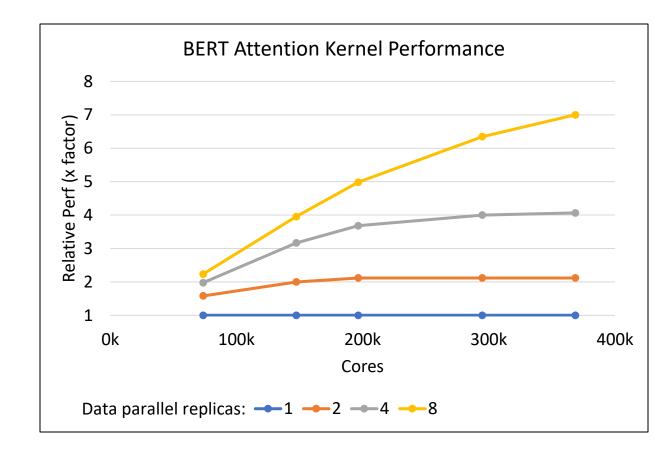
Run layer replicas on fabric sections

- Replicas in parallel = more performance
- Applies to smaller layers/networks

Not forced to large batch size

- Small batch size per replica
- Single sample execution enabled by memory performance at low batch
- Larger batch by running multi-samples
- Low weight sync overhead
 - Enabled by low latency and high bandwidth interconnect

Result: linear performance scaling with *medium* batch size



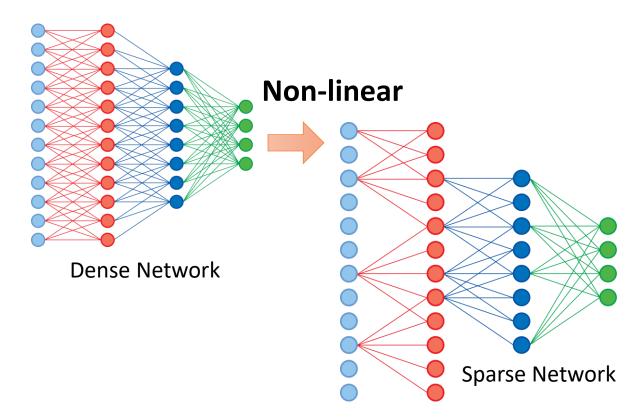
2) Translating Sparsity into Training Performance

Large number of zeros in neural network

- Nonlinears create activation sparsity
- Mul-Add by zero does not change the result

Kernels designed for sparsity

- Harvest natural sparsity in neural network
- Induce sparsity when not naturally occurring



Core Designed for Sparsity

Enabled by dataflow scheduling in hardware

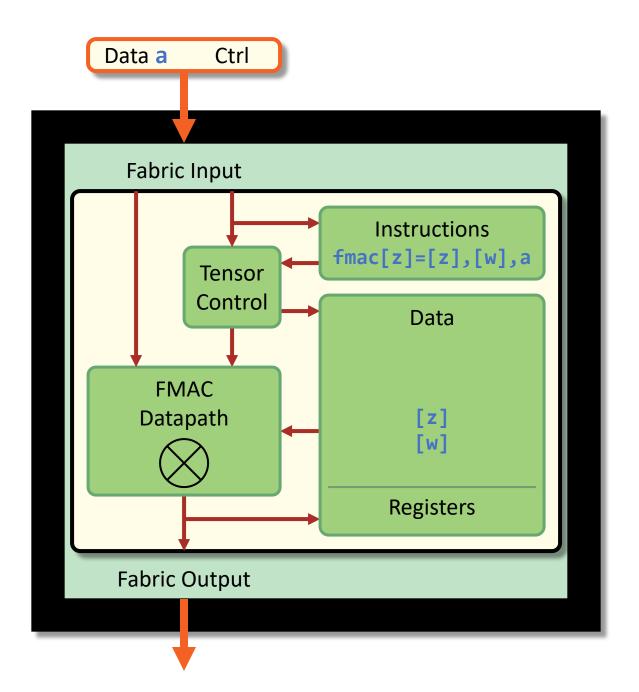
- Fabric data triggers instruction lookup
- State machine schedules datapath cycles

Intrinsic sparsity harvesting

- Sender filters out sparse zero data
- Receiver skips unnecessary processing

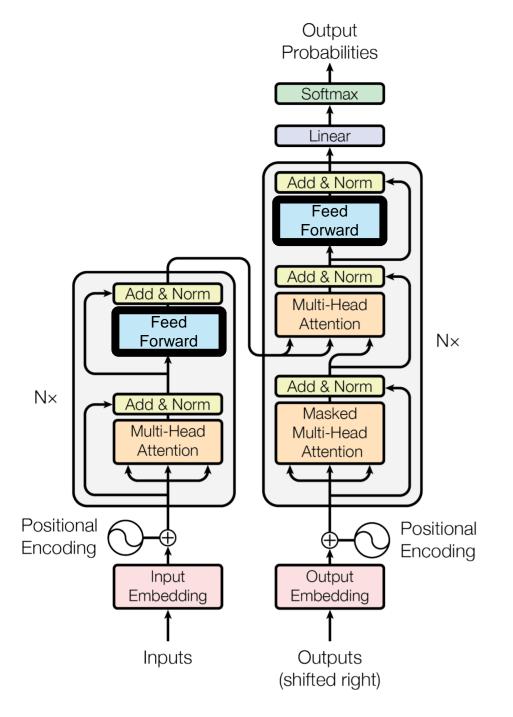
Fine-grained execution datapaths

- Small cores with independent instructions
- High utilization for dynamic non-uniform work



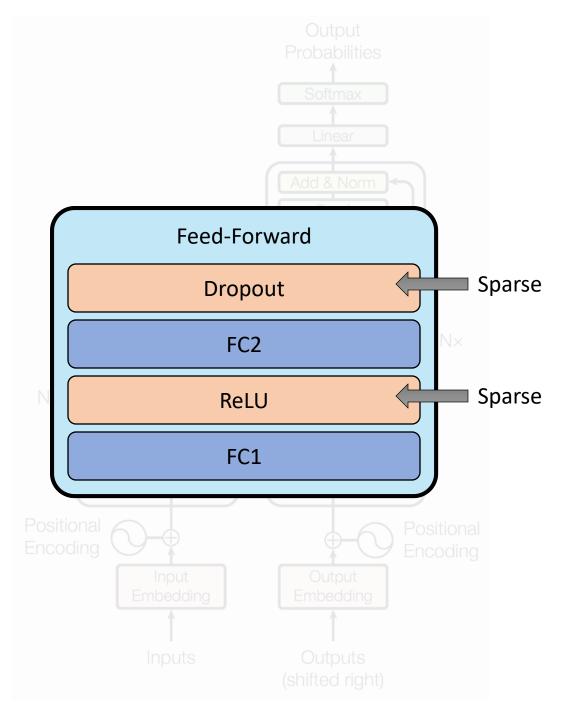
Natural Sparsity in Transformer

- Transformer uses ReLU and Dropout non-linears
 - ReLU is 90% naturally sparse
 - Dropout is 30% naturally sparse
- **1.2x perf gain** vs. dense non-linear and no dropout



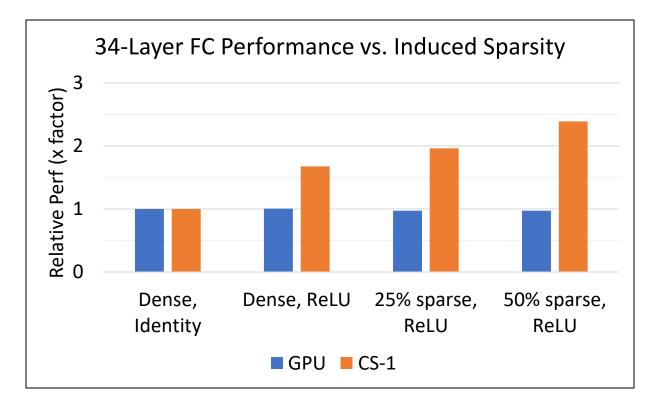
Natural Sparsity in Transformer

- Transformer uses ReLU and Dropout non-linears
 - ReLU is 90% naturally sparse
 - Dropout is 30% naturally sparse
- **1.2x perf gain** vs. dense non-linear and no dropout



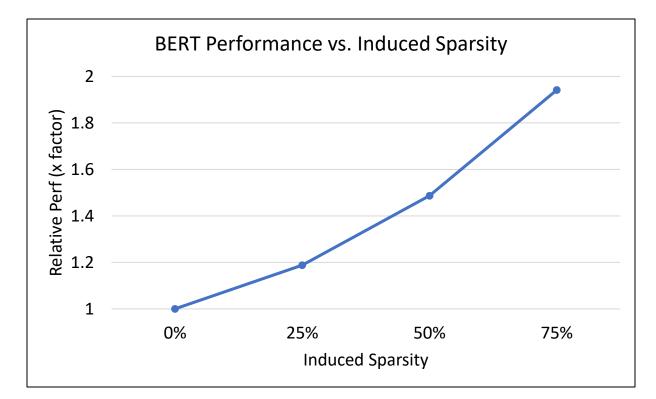
Inducing Sparsity

- Sparsity can be **induced** by
 - Adding sparse non-linear (e.g. ReLU)
 - Dropping relatively small values
- Inducing sparsity on 34-Layer dense FC model
- 1.7x perf gain with ReLU
- 2.4x perf gain with ReLU+50% sparsity



Inducing Sparsity in BERT

- BERT has no natural sparsity
- But sparsity can be induced on most layers in both fwd and bwd pass
- Up to **1.5x perf gain** with 50% sparsity and minimal accuracy loss
- ML user has control



3) Designed to Unlock Smarter Techniques and Scale

WSE has a data flow architecture

- Flexibility to stream token by token
- Inherent sparsity harvesting

WSE is a MIMD architecture

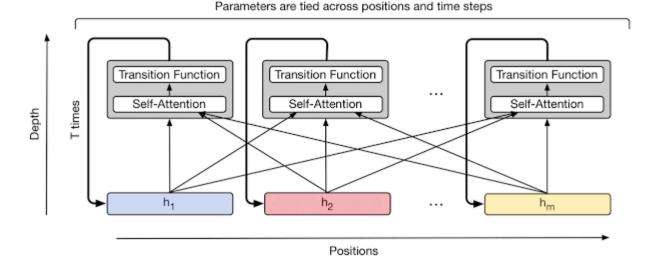
- Can program each core independently
- Perform different operations on different data

Flexibility Enables Dynamic ML Methods

Fine-grained dynamic execution enables new ML techniques

- 1. Variable sequence length
 - Stop at end of sequence, no padding
- 2. Irregular/NAS models
 - High utilization for non-square matrices
- 3. Recursive dynamic depth
 - Run enough layers to meet objective
- 4. Dynamic (and long) sequence length
 - Process only relevant part of sequence

Universal Transformer with Dynamic Depth

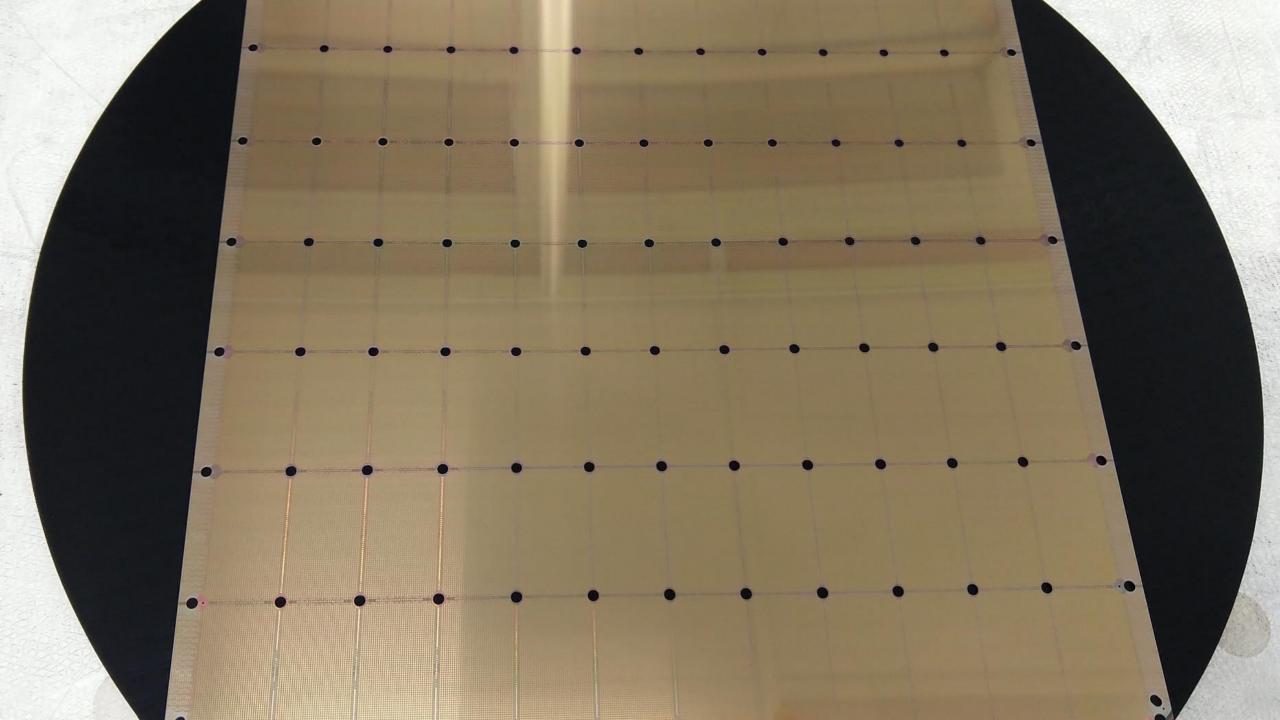


CS-1 HW/SW Co-design Enables Next Gen DL models

The community wants smarter **and** larger models

- CS-1 is the most **powerful single node**
 - Automatic scaling through model and data parallelism
 - Accessible cluster-scale performance on a single chip
- CS-1 is **flexible and dynamic**
 - Fine-grained sparsity harvesting and induction
 - Novel adaptive & dynamic novel ML techniques

This combination of flexibility and performance **enables the next generation of models and techniques** otherwise challenged today.



Wafer Scale Engine – Generation 2

850,000 Al-optimized cores

2.6 Trillion Transistors

TSMC 7nm Process