
Cerebras Systems

Software Co-design for the 
First Wafer-Scale Processor (and Beyond)



Cerebras Wafer 
Scale Engine (WSE) 

The Most Powerful Processor for AI

400,000 AI-optimized cores

46,225 mm2 silicon

1.2 trillion transistors

18 Gigabytes of On-chip Memory

9 PByte/s memory bandwidth

100 Pbit/s fabric bandwidth

TSMC 16nm process



Cerebras CS-1: Cluster-Scale 
DL Performance in a Single System

Powered by the WSE

Programming accessibility of a single node, using 
TensorFlow, PyTorch, and other frameworks

Deploys into standard datacenter infrastructure

Multiple units delivered, installed, and in-use today 
across multiple verticals

Built from the ground up for AI acceleration



Architecture Designed for Deep Learning

Each component optimized for AI compute

Compute
• Fully-programmable core, ML-optimized extensions
• Dataflow architecture for sparse, dynamic workloads

Memory
• Distributed, high performance, on-chip memory

Communication
• High bandwidth, low latency fabric
• Cluster-scale networking on chip
• Fully-configurable to user-specified topology 

Together, orders of magnitude performance and 
efficiency gain

Linear cluster-scale performance on a single chip



SW Co-designed for Scale 
from the Beginning

This time, we’ll cover how the codesigned software 
leverages the power and flexibility of the WSE for 
deep learning acceleration. 

And what’s next.



Programming the Wafer-Scale Engine

Users program the WSE using standard ML frameworks, e.g. TensorFlow, PyTorch

Cerebras Graph Compiler automatically compiles the DNN graph

• Extracts from Framework, converts to Cerebras IR, performs matching to Cerebras kernels

• Place & Route allocates compute and memory, configures on-chip network

Enables straightforward programming, flexible execution, high performance



Matching to Kernel Library

Graph matching from FW ops to Kernels:

• Primitives to be sized and placed by rest of CGC

• Expressed as nested for-loops for generality

2 Kernel Types:

1. Auto-generated

• General and supports various operations

• Polyhedral techniques

• Unrolling loop dimensions across fabric

2. Hand-optimized

• High-performance common kernels

• Hand-tuned ucode and fabric programming

for i= 0...783:
for j= 0...255:
out0[j] += lhs[i]*rhs[i][j]

MATMUL Kernel

MATMUL Op



Choosing the Optimal Mapping Strategy

• Choose mapping strategy for each kernel
• Model parallel – size and allocation of each kernel

• Data parallel – replication factor

• Strategy determines
• Allocation of compute cores to kernel

• Amount of memory to kernel

• Optimal communication pattern

Neural Network Kernels



Automatically Exploring the Optimization Search Space 

One possible allocation of the compute, 
memory, and fabric to each kernel

A different allocation of compute, 
memory, and fabric to each kernel

Neural Network Kernels

Allocation

Compute:

Memory:

Fabric:

0% 100% Allocation

Compute:

Memory:

Fabric:

0% 100%

Network Perf: Network Perf:



Automatically Exploring the Optimization Search Space 

Option 6x6
36 cores

Option 3x6:
2X slower

½ area

Option 6x12
2X faster
2X area

Option 3x3:
4X slower

¼ area

Fine-tuned Area vs Performance trade-off per kernel

Option 12x12
4X faster
4X area



dog
cat

Continuously Streaming Input

Continuously Streaming Output

Mapping 
Compute 
Kernels 
on the CS-1



Co-Designed for Training Flexibility and Performance

Compiler stack and hardware architecture co-designed

Result: Flexibility and Performance

1. Model parallel and data parallel execution

2. Sparsity harvesting and inducing

3. Dynamic neural network execution



1) Flexible Parallelism

• Optimization search enables spectrum of parallel execution strategies on WSE

• Single algorithm uses both model and data parallelism in optimization

• Execution strategies optimized for different network characteristics

Data Parallel
(Batch Size)

M
o

d
el

 P
ar

al
le

l

WSE Layer-Pipelined

Layer-sequential
WSE GPU

Device 1 Device 2

Data Parallel

Sample 1

Running multiple 
samples at same time

Sample N

Device 1 Device 2

Model Parallel

Running multiple parts 
of network at same time

Model 
Part 1

Model 
Part 2



1.0

1.5

2.0

2.5

3.0

3.5

4.0

0k 100k 200k 300k 400k

R
el

at
iv

e 
Pe

rf
 (

x 
fa

ct
o

r)

Cores

4-Layer BERT Performance, Fixed Batch Size = 16

Using Model Parallelism

• Run all layers on fabric sections
• Layers in parallel = more performance

• Execute network as pipeline

• Enabled by high bandwidth interconnect

• Small batch size
• No need to replicate network

• No weight sync overhead
• Weights updated in place

Result: linear performance scaling with 
small batch size



1

2

3

4

5

6

7

8

0k 100k 200k 300k 400k

R
el

at
iv

e 
Pe

rf
 (

x 
fa

ct
o

r)

Cores

BERT Attention Kernel Performance

1 2 4 8Data parallel replicas:

Using Data Parallelism

• Run layer replicas on fabric sections
• Replicas in parallel = more performance

• Applies to smaller layers/networks

• Not forced to large batch size
• Small batch size per replica

• Single sample execution enabled by 
memory performance at low batch

• Larger batch by running multi-samples

• Low weight sync overhead
• Enabled by low latency and high 

bandwidth interconnect

Result: linear performance scaling with 
medium batch size



2) Translating Sparsity into Training Performance

Large number of zeros in neural network

• Nonlinears create activation sparsity

• Mul-Add by zero does not change the result

Kernels designed for sparsity

• Harvest natural sparsity in neural network

• Induce sparsity when not naturally occurring
Dense Network

Sparse Network

Non-linear



Core Designed for Sparsity

Enabled by dataflow scheduling in hardware

• Fabric data triggers instruction lookup

• State machine schedules datapath cycles

Intrinsic sparsity harvesting

• Sender filters out sparse zero data

• Receiver skips unnecessary processing

Fine-grained execution datapaths

• Small cores with independent instructions

• High utilization for dynamic non-uniform work

Fabric Input

Fabric Output

Instructions
fmac[z]=[z],[w],a

Data

Tensor 
Control

FMAC
Datapath [z]

[w]

Registers

Data a Ctrl



Natural Sparsity in Transformer

• Transformer uses ReLU and Dropout 
non-linears
• ReLU is 90% naturally sparse

• Dropout is 30% naturally sparse

• 1.2x perf gain vs. dense non-linear 
and no dropout

Feed

Forward

Feed

Forward



Backward

Natural Sparsity in Transformer

• Transformer uses ReLU and Dropout 
non-linears
• ReLU is 90% naturally sparse

• Dropout is 30% naturally sparse

• 1.2x perf gain vs. dense non-linear 
and no dropout

FC1

ReLU

FC2

Dropout Sparse

Sparse

Feed-Forward



Inducing Sparsity

• Sparsity can be induced by
• Adding sparse non-linear (e.g. ReLU)

• Dropping relatively small values

• Inducing sparsity on 34-Layer dense 
FC model

• 1.7x perf gain with ReLU

• 2.4x perf gain with ReLU+50% sparsity
0

1

2

3

Dense,
Identity

Dense, ReLU 25% sparse,
ReLU

50% sparse,
ReLU

R
el

at
iv

e 
Pe

rf
 (

x 
fa

ct
o

r)

34-Layer FC Performance vs. Induced Sparsity

GPU CS-1



1

1.2

1.4

1.6

1.8

2

0% 25% 50% 75%

R
el

at
iv

e 
Pe

rf
 (

x 
fa

ct
o

r)

Induced Sparsity

BERT Performance vs. Induced Sparsity

Inducing Sparsity in BERT

• BERT has no natural sparsity

• But sparsity can be induced on most 
layers in both fwd and bwd pass

• Up to 1.5x perf gain with 50% sparsity 
and minimal accuracy loss

• ML user has control



3) Designed to Unlock Smarter Techniques and Scale

WSE has a data flow architecture

• Flexibility to stream token by token
• Inherent sparsity harvesting

WSE is a MIMD architecture

• Can program each core independently 
• Perform different operations on different data



Flexibility Enables Dynamic ML Methods

Fine-grained dynamic execution 
enables new ML techniques

1. Variable sequence length
• Stop at end of sequence, no padding

2. Irregular/NAS models
• High utilization for non-square matrices

3. Recursive dynamic depth
• Run enough layers to meet objective

4. Dynamic (and long) sequence length
• Process only relevant part of sequence

Universal Transformer with Dynamic Depth



CS-1 HW/SW Co-design Enables Next Gen DL models

The community wants smarter and larger models 

• CS-1 is the most powerful single node
• Automatic scaling through model and data parallelism
• Accessible cluster-scale performance on a single chip

• CS-1 is flexible and dynamic
• Fine-grained sparsity harvesting and induction
• Novel adaptive & dynamic novel ML techniques

This combination of flexibility and performance enables the next generation of models 
and techniques otherwise challenged today.





Wafer Scale Engine – Generation 2

850,000 AI-optimized cores

2.6 Trillion Transistors

TSMC 7nm Process


