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Dynamic Execution
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Large Clusters are Already the Norm

§ Shared memory architectures could not provide the required scale

§ Many modern neural nets are trained and inferenced on clusters

§ Many nodes with 4-16 GPUs

§ Private memory space, explicit data movement

§ Data parallel at first
§ Sidesteps many communication/synchronization issues

§ but model parallel has become necessary
§ The full complexity of cluster programming is now exposed



Largest. Clusters. Ever.

§ Networking + compute on each chip

§ Computation directly on packets

§ Packet routing controlled by graph compiler

§ Hundreds of thousands of nodes in cluster

§ One device in Pytorch WH WH WH WH

WH WH WH WH

WH WH WH WH

WH WH WH WH
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2U system

42U Rack

Module

Cluster



Shared Memory Machines

§ Each processing unit can see the full memory space

§ A processor needs an array element: just issue a LOAD

§ Tensor manipulations and views mostly reduce to 

strided access to same buffer in memory

§ Primary compiler challenge – loop nest optimization
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Clusters and ML Chips Have Private Memory

§ Data is split up between nodes and no local view exists
§ Data transfers explicitly managed

§ Tensor manipulations -> inter-node co-ordination
§ Example transpose implementation:

§ Data transfer between 1,0 <-> 0,1

§ Transpose of local tiles

§ Hard challenges:
§ Data tiling and parallelization

§ Data transfers, synchronization

§ Complexities with tensor manipulations

§ Memory management

§ We solve them holistically

Tenstorrent confidential

Transpose
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Dynamic Execution
What is it?



Dynamic Execution

Sparse Compute Runtime CompressionControl Flow

Models that dynamically 

choose subsets of blocks to 

compute during each pass

fp32 fp32

fp16

8-bit 8-bit

mat

mult

Dynamic Precision

Weights and activations



O(n) Matrix Multiplication
Weights/activations (dense)

Activations (dense) Result (dense) Activations (sparse)

Weights (dense)

Result (sparse)

Weights (dense)

Result (sparse)Activations (dense)

Dense: O(n^3) Sparse: linear speed-up Chained sparse MM:

quadratic speed up

Sparsity Max boost

50% 2X

90% 10X

Sparsity Max boost

50% 4X

90% 100X



O(n) continued

§ Generally applicable

§ works for training and inference (unlike pruning)

§ models with general applicability (like GPT3)

§ Requires models that dynamically choose subsets of blocks to 

compute during each pass

§ Mixture of experts

§ LSH

§ Pre-pass based

§ Requires hardware that can realize full speed-up from block sparsity

Result (sparse)

16x16 block



The Full Stack Solution
Architecture & Software



Grayskull
Cluster On a Chip

§ 2D grid of cores

§ 120 self contained cores

§ Each core executing independent program

§ Network on chip

§ 2D bi-directional torus

§ Optimized for ML-workload

§ Connectivity

§ PCIe

§ DRAM
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Single Core

§ Packet Compute

§ Vector, SIMD 

§ Programmable & flexible compute

§ Sparse compute

§ Packet Manager
§ Data transfers & storage

§ Tensor manipulation

§ Dynamic compression

§ Storage
§ Local SRAM

§ Access to DRAM

§ 5 RISC cores

§ Powerful single-issue processor

§ Runtime software

Packet 

Compute

Packet 

Manager

Packet 

Manager
SRAM

NoC

Local SRAM
1MB

660 GB/sec R/W bw

Compute
3 TOPs (8-bit)

0.75 TFLOPs (16-bit)

Data formats

Bfloat, half-float, tf32

8-bit

Several custom formats, <=8-bit fp



Challenges of Connecting Compute Layers

§ Parallelization

§ Splitting tensors amongst the cores

§ Moving tensors between the cores

§ Tensor Manipulation (TM) instructions

§ Reshuffle data in various ways

§ Performance

§ Overlapping compute & transfers

§ Efficient utilization of NoC 

§ Efficient utilization of memory bandwidth Compute
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instructions
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Complexity

Reshape Transpose Squeeze



The Full Stack Approach

AOT

Compiler

Runtime Hardware

Parallelizes compute & 

packetizes tensors

Dynamic memory 

management

Packet 

manager



Graph Compiler
Compilation Into Packets

§ Packetization

§ Packet headers: packet IDs & routing information 

§ No pointers, everything is expressed in terms of packet IDs

§ Compute layer parallelization optimized by graph compiler

§ Data movement & synchronization expressed explicitly by 
compiler

§ NoC is visible to compiler

§ Produces an Instruction Queue for the Packet Manager
§ Packets re-ordered by NoC

§ In-line TMs

§ Memory access patterns
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Packet Manager

• Packet Compute Engine

• Programmable device, flexibility

• Computes what Packet Manager feeds it

• Packet header triggers a program for the 

packet

Packet 

Manager

Packet 

Compute

Single Core

NoC

SRAM

DRAM



Packet Manager

• Tensor Manipulation Engine

• Reshape, transpose, concat, slice

• In-line, between compute & memory

• Dynamic packet compression

• Data Transfer Engine

• Multi-core synchronization

• Data dependencies, data hazards, data ready, 

memory space ready

• Works with runtime software

• Router

• Moves data across the NoC

• Back-pressure, guaranteed ordering, deadlock free

• Optimized multi-cast and gather operation for ML 

workloads

Packet Manager

NoC Router

Tensor 

Manipulation

Data Transfer 

Engine

Packet 

Compute Engine

SRAM

DRAM



Runtime Software

§ Five RISC processors per core

§ Dynamic memory allocation 
§ Runtime buffer (de)allocation 

§ Runtime controlled memory target 

§ Data locality through SRAM 

§ Spills to DRAM and host 

§ Control flow
§ if-statements, for-loops, while-loops

§ Decisions reflected by jumping around the Instruction Queue executed 
by Packet Compute and Packet Manager

Packet 

Compute 

Engine

Packet 

Manager

Packet 

Manager
SRAM



Flexible Scheduling & Parallelization

Clusters of nodes mapped 

spatially onto the cores

pipeline 

stage 1

pipeline 

stage 2

pipeline 

stage 3

pipeline 

stage 4

pipeline 

stage 1

pipeline 
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pipeline 
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pipeline 

stage 4

Pipeline Parallelism Model Parallelism

A

B

C

D

Layers without data 

dependencies run 

concurrently

CB DA

6 cores

4 cores
9 cores

4 cores

Combining multiple parallelization methods
leads to higher utilization of large number of cores, 

resulting in higher performance
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The Full Stack Approach

§ High-performance through concurrency

§ Asynchronous cores: flexible parallelization & scheduling

§ Packet manager & Packet Compute overlap data transfers & 
compute

§ High memory utilization

§ AOT graph compiler can not accurately predict buffer lifetimes 

§ Dynamic memory management compensates 

§ Dynamic execution

§ Runtime packet compression & data locality benefits

§ Sparse compute

§ Control flow graphs

AOT

Compiler

Runtime Hardware

Parallelizes compute & 

packetizes tensors

Dynamic memory 

management

Packet 

manager



Company Overview, Status
& 

Plans



Company Overview

§ Tenstorrent

§ Founded in 2016

§ ~70 employees in Toronto and Austin

§ Equal mix of CPU, GPU, FPGA backgrounds

§ Goals and targets

§ ML inference and training

§ Edge to data center

§ General purpose high throughput parallel computation
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Grayskull (2020)

ML processor

• 8 channels of LPDDR4, PCIE g4 x16

• 4 core OoO ARC CPU, runs linux

• 368 TOPS / 92 TFLOPS, 120MB SRAM

• 65W

Evaluation with multiple large customers

Shipping this fall

Wormhole (2021)

Network switch & ML processor

• Integrated network switch

• 16 ports of 100G ethernet

• 6 channels of GDDR6, PCIE g4 x16

• 4 core OoO ARC CPU, runs linux
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Jawbridge (2019)

ML processor

• 1 channels of LPDDR4, PCIE g4 x4

• 4 core OoO ARC CPU, runs linux

• 4 TOPS / 1 TFLOPS, 6MB SRAM

• 1.5W
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65W Grayskull BERT Inference Performance

Workload Score

BERT BASE, SQuAD 1.1, fp16 – no conditionals 2,830

BERT BASE, SQuAD 1.1, fp16 + light conditional execution 10,150

BERT BASE, SQuAD 1.1, mixed precision, moderate conditional execution 23,345

Work in progress, BERT model modified with conditional execution 

*



Software: Compiler generality

NLP

§ BERT

§ ALBERT

§ GPT2

§ T5 LM

§ GNMT

§ Transformer

§ Electra

NLP

Key verticals:

Healthcare, Financials, 

Ecommerce, Retail

Models ready:

§ BERT

§ ALBERT

§ GPT2

§ T5 LM

§ GNMT

§ Transformer

§ Electra

Vision/Imaging

Key verticals:

Retail, Security, 

Automotive  

Models ready:

§ Resnet50

§ DeepCoNN

§ Googlenet

§ Densenet

§ Inception

§ Alexnet

§ ResNext

§ SqueezeNet

§ Mobilenet

§ VGG

§ YOLO

§ SSD Resnet34

§ SSD 
Mobilenet

Others

Key verticals:

Gaming, Entertainment, 

social media, ecommerce

Models ready:

§ NCF

§ DLRM

§ Autoencoder

§ Stacked denoising 
autoencoder

Eval with customers

Public beta on our dev cloud 

November 1st



Framework Integration + Deployment

Back End

Graph Compiler
Optimizer

Front End

§ Full Pytorch integration

§ Native device

§ Torchscript with full support for conditionals

§ ONNX

§ A single device from PyTorch no matter the size of 

computer

§ Automated deployment flow

§ Pre-trained models can benefit from Tenstorrent features

WH WH WH WH

WH WH WH WH

WH WH WH WH

WH WH WH WH

2U system

Single card



Summary

compute

ML§ Scale and conditional computation to let ML models grow

§ Flexibility: run anything

§ Usability: easy to use software, hiding all complexity of 

programming clusters


