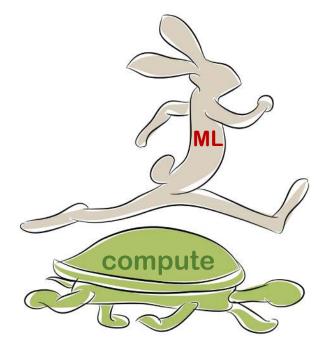


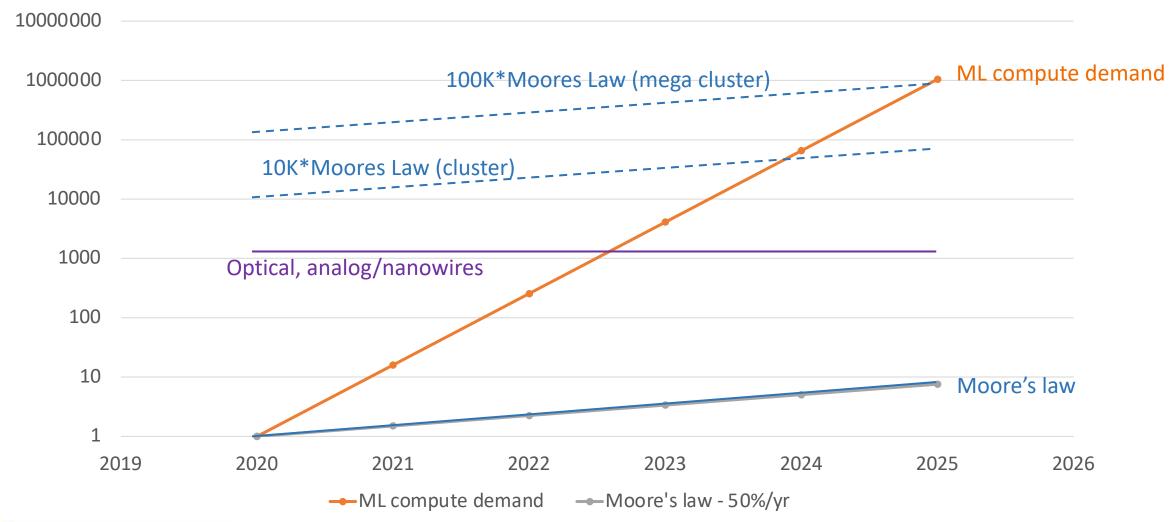
Compute substrate for Software 2.0

Ljubisa Bajić and Jasmina Vasiljević

ML vs. Moore's Law



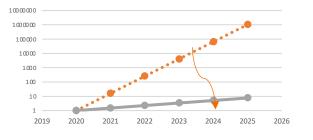
ML vs. Moore's Law (Optimistic)



Scale out

Dynamic Execution

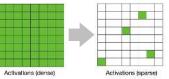
ML vs. Moore's Law



•••• ML compute demand Moore's law -50%/yr

Scale helps, but the only long-term solution is to change the slope of the curve

20 Watts



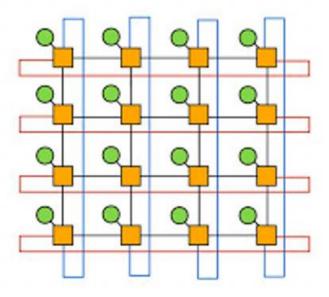
Scale Out

Large Clusters are Already the Norm

- Shared memory architectures could not provide the required scale
- Many modern neural nets are trained and inferenced on clusters
 - Many nodes with 4-16 GPUs
 - Private memory space, explicit data movement
- Data parallel at first

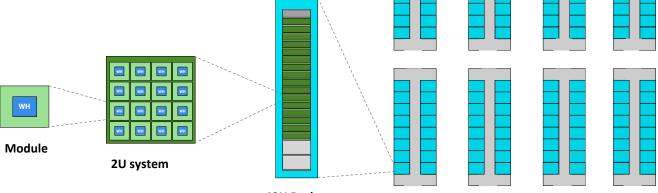
enstorrent

- Sidesteps many communication/synchronization issues
- but model parallel has become necessary
 - The full complexity of cluster programming is now exposed



Largest. Clusters. Ever.

- Networking + compute on each chip
- Computation directly on packets
- Packet routing controlled by graph compiler
- Hundreds of thousands of nodes in cluster
- One device in Pytorch

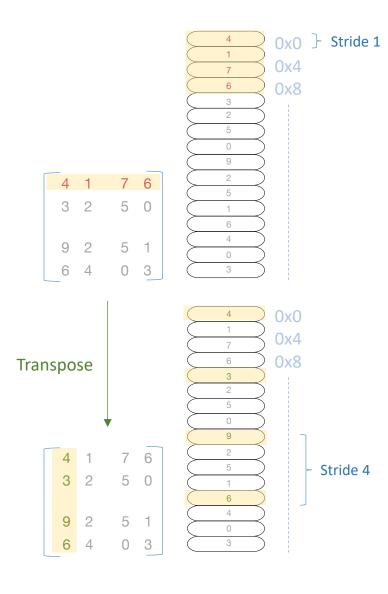


42U Rack

Cluster

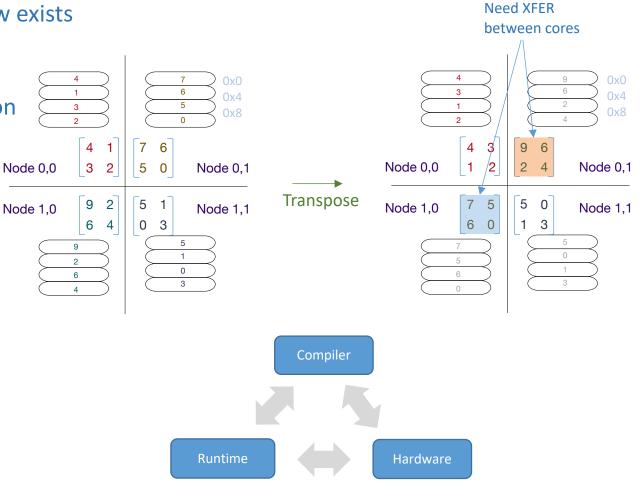
Shared Memory Machines

- Each processing unit can see the full memory space
- A processor needs an array element: just issue a LOAD
- Tensor manipulations and views mostly reduce to strided access to same buffer in memory
- Primary compiler challenge loop nest optimization



Clusters and ML Chips Have Private Memory

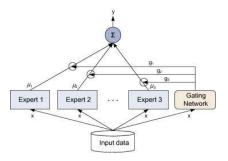
- Data is split up between nodes and no local view exists
 - Data transfers explicitly managed
- Tensor manipulations -> inter-node co-ordination
 - Example transpose implementation:
 - Data transfer between 1,0 <-> 0,1
 - Transpose of local tiles
- Hard challenges:
 - Data tiling and parallelization
 - Data transfers, synchronization
 - Complexities with tensor manipulations
 - Memory management
- We solve them holistically



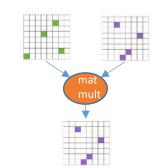
Dynamic Execution What is it?

Dynamic Execution

Control Flow

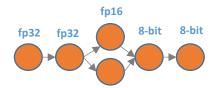


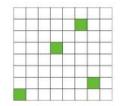
Models that dynamically choose subsets of blocks to compute during each pass



Dynamic Precision

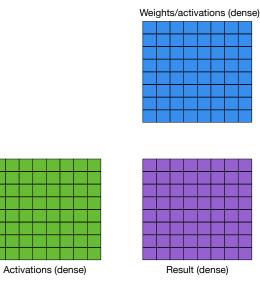
Runtime Compression



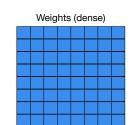


Weights and activations

O(n) Matrix Multiplication



Dense: O(n^3)

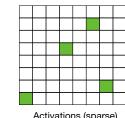


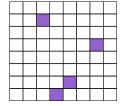
Activations (dense)							F	lesi	ult (spa	arse	e)				

Sparse: linear speed-up

Sparsity	Max boost
50%	2X
90%	10X

Weights (dense)								





Activations (sparse)

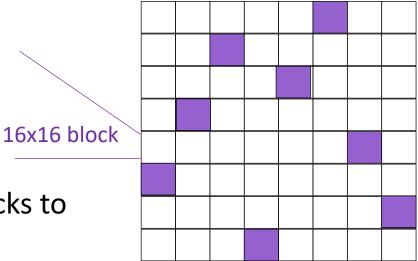
Result (sparse)

Chained sparse MM: quadratic speed up

Sparsity	Max boost
50%	4X
90%	100X

O(n) continued

- Generally applicable
 - works for training and inference (unlike pruning)
 - models with general applicability (like GPT3)
- Requires models that dynamically choose subsets of blocks to compute during each pass
 - Mixture of experts
 - LSH
 - Pre-pass based
- Requires hardware that can realize full speed-up from block sparsity



Result (sparse)

The Full Stack Solution Architecture & Software

Grayskull Cluster On a Chip

2D grid of cores

- 120 self contained cores
- Each core executing independent program

Network on chip

- 2D bi-directional torus
- Optimized for ML-workload

Connectivity

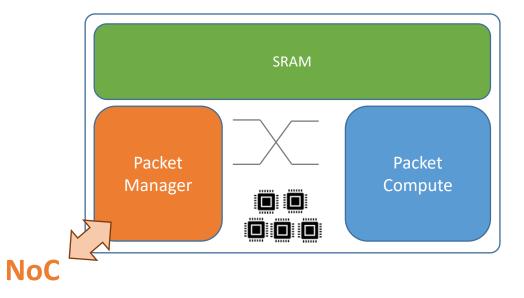
- PCle
- DRAM

	LPDDR4	LPDDR4	LPDDR4	LPDDR4	
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
	ТТТ	ТТ	ΤΤΤ	ТТТ	
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
P C	ΤΤΤ	T T T	ТТТ	ΤΤΤ	A
E I	ΤΤΤ	ΤΤΤ	ΤΤΤ	ΤΤΤ	R C
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
	ΤΤΤ	TTT	ΤΤΤ	ΤΤΤ	
	ΤΤΤ	T T T	ΤΤΤ	ΤΤΤ	
	LPDDR4	LPDDR4	LPDDR4	LPDDR4	

NoC BW	330 GB/sec
PCIe	Gen3 x16
Off-chip memory	LPDDR4

Single Core

- Packet Compute
 - Vector, SIMD
 - Programmable & flexible compute
 - Sparse compute
- Packet Manager
 - Data transfers & storage
 - Tensor manipulation
 - Dynamic compression
- Storage
 - Local SRAM
 - Access to DRAM
- 5 RISC cores
 - Powerful single-issue processor
 - Runtime software



Local SRAM	1MB 660 GB/sec R/W bw		
Compute	3 TOPs (8-bit) 0.75 TFLOPs (16-bit)		
Data formats	Bfloat, half-float, tf32 8-bit Several custom formats, <=8-bit fp		

Challenges of Connecting Compute Layers

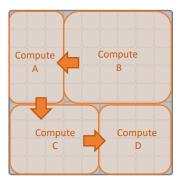
Parallelization

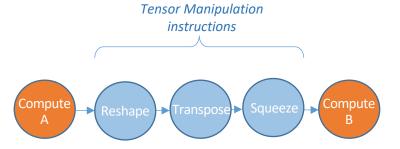
- Splitting tensors amongst the cores
- Moving tensors between the cores
- Tensor Manipulation (TM) instructions
 - Reshuffle data in various ways

Performance

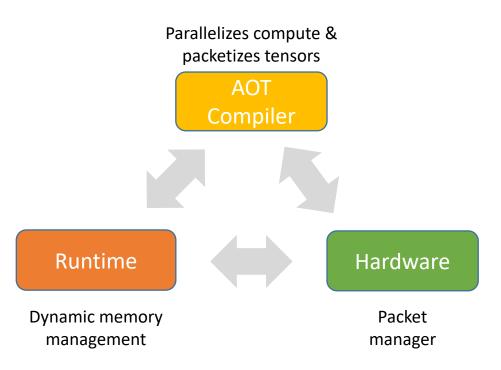
- Overlapping compute & transfers
- Efficient utilization of NoC
- Efficient utilization of memory bandwidth

Compound Complexity

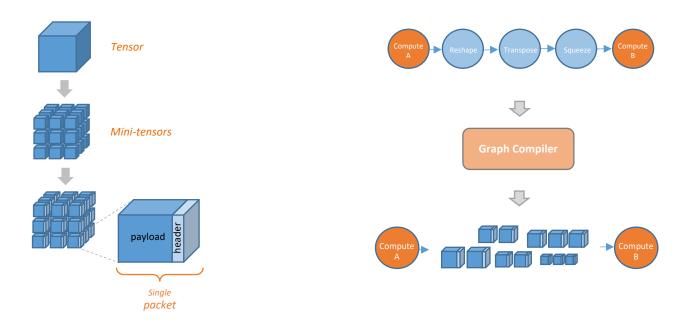




The Full Stack Approach



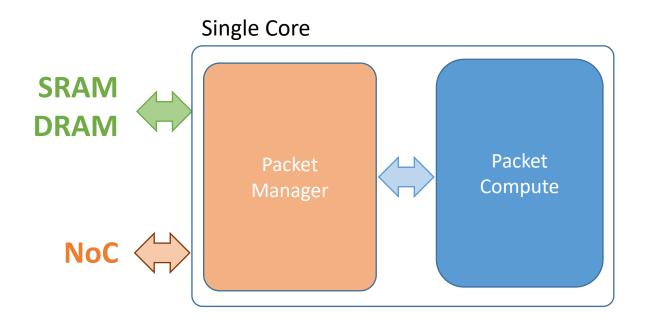
Graph Compiler Compilation Into Packets



Packetization

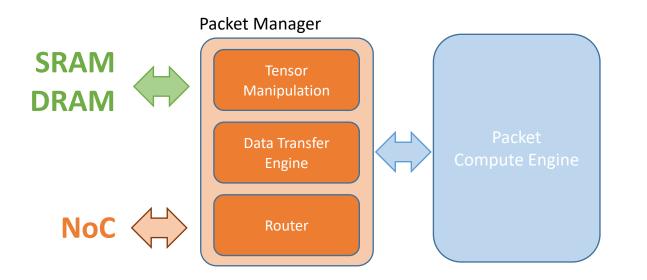
- Packet headers: packet IDs & routing information
- No pointers, everything is expressed in terms of packet IDs
- Compute layer parallelization optimized by graph compiler
- Data movement & synchronization expressed explicitly by compiler
 - NoC is visible to compiler
- Produces an Instruction Queue for the Packet Manager
 - Packets re-ordered by NoC
 - In-line TMs
 - Memory access patterns

Packet Manager



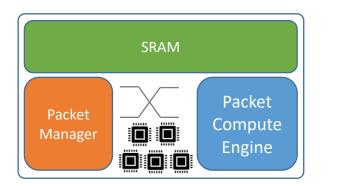
- Packet Compute Engine
 - Programmable device, flexibility
 - Computes what Packet Manager feeds it
 - Packet header triggers a program for the packet

Packet Manager



- Tensor Manipulation Engine
 - Reshape, transpose, concat, slice
 - In-line, between compute & memory
 - Dynamic packet compression
- Data Transfer Engine
 - Multi-core synchronization
 - Data dependencies, data hazards, data ready, memory space ready
 - Works with runtime software
- Router
 - Moves data across the NoC
 - Back-pressure, guaranteed ordering, deadlock free
 - Optimized *multi-cast* and *gather* operation for ML workloads

Runtime Software

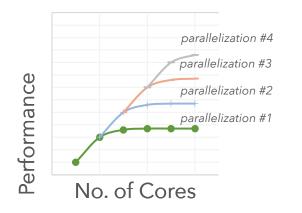


- Five RISC processors per core
- Dynamic memory allocation
 - Runtime buffer (de)allocation
 - Runtime controlled memory target
 - Data locality through SRAM
 - Spills to DRAM and host

Control flow

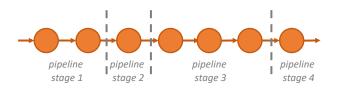
- if-statements, for-loops, while-loops
- Decisions reflected by jumping around the Instruction Queue executed by Packet Compute and Packet Manager

Flexible Scheduling & Parallelization



Combining multiple parallelization methods leads to higher utilization of large number of cores, resulting in higher performance

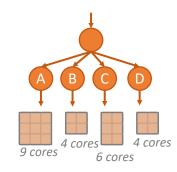
Pipeline Parallelism

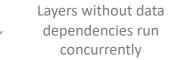


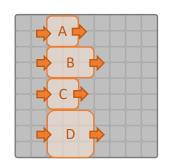


pipeline stage 2 pipeline stage 1 pipeline stage 3 pipeline stage 4

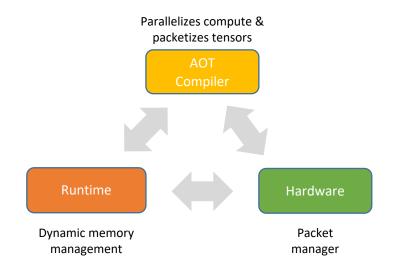
Model Parallelism







The Full Stack Approach



High-performance through concurrency

- Asynchronous cores: flexible parallelization & scheduling
- Packet manager & Packet Compute overlap data transfers & compute

High memory utilization

- AOT graph compiler can not accurately predict buffer lifetimes
- Dynamic memory management compensates

Dynamic execution

- Runtime packet compression & data locality benefits
- Sparse compute
- Control flow graphs

Company Overview, Status & Plans

Company Overview

Tenstorrent

- Founded in 2016
- ~70 employees in Toronto and Austin
- Equal mix of CPU, GPU, FPGA backgrounds

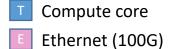
Goals and targets

- ML inference and training
- Edge to data center
- General purpose high throughput parallel computation

Jawbridge (2019)

ML processor

- 1 channels of LPDDR4, PCIE g4 x4
- 4 core OoO ARC CPU, runs linux
- 4 TOPS / 1 TFLOPS, 6MB SRAM
- 1.5W

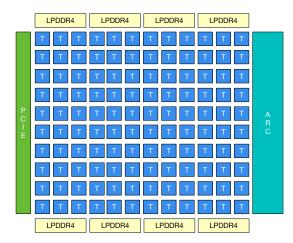


Tenstorrent

Grayskull (2020)

ML processor

- 8 channels of LPDDR4, PCIE g4 x16
- 4 core OoO ARC CPU, runs linux
- 368 TOPS / 92 TFLOPS, 120MB SRAM
- 65W



Evaluation with multiple large customers Shipping this fall

Wormhole (2021)

Network switch & ML processor

- Integrated network switch
- 16 ports of 100G ethernet
- 6 channels of GDDR6, PCIE g4 x16
- 4 core OoO ARC CPU, runs linux

65W Grayskull BERT Inference Performance

Workload	Score
BERT BASE, SQuAD 1.1, fp16 – no conditionals	2,830
BERT BASE, SQuAD 1.1, fp16 + light conditional execution	10,150
BERT BASE, SQuAD 1.1, mixed precision, moderate conditional execution	23,345*

Work in progress, BERT model modified with conditional execution

Software: Compiler generality

NLP

Key verticals:

Healthcare, Financials, Ecommerce, Retail

Models ready:

- BERT
- ALBERT
- GPT2
- T5 LM
- GNMT
- Transformer

enstorrent

Electra

Vision/Imaging

Key verticals:

Retail, Security, Automotive

Models ready:

- Resnet50SqueezeNet
- DeepCoNN Mobilenet
- Googlenet
 VGG
- Densenet
 YOLO
- Inception SSD Resnet34
- Alexnet
 SSD Mobilenet
- ResNext

Others Key verticals: Gaming, Entertainment, social media, ecommerce

Models ready:

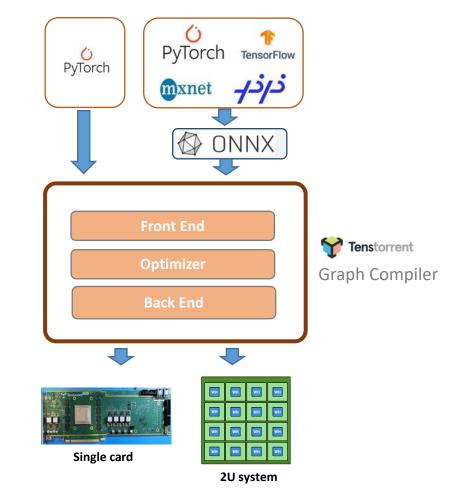
- NCF
- DLRM
- Autoencoder
- Stacked denoising autoencoder

Eval with customers

Public beta on our dev cloud November 1st

Framework Integration + Deployment

- Full Pytorch integration
 - Native device
 - Torchscript with full support for conditionals
 - ONNX
- A single device from PyTorch no matter the size of computer
- Automated deployment flow
 - Pre-trained models can benefit from Tenstorrent features



Summary

- Scale and conditional computation to let ML models grow
- Flexibility: run anything
- Usability: easy to use software, hiding all complexity of programming clusters

